LATTICES OF TWO-SIDED IDEALS OF LOCALLY MATRICIAL ALGEBRAS AND THE Γ -INVARIANT PROBLEM

RY

PAVEL RŮŽIČKA*

Department of Algebra MFF, Charles University Sokolovská 83, 186 75 Prague 8, Czech Republic e-mail: ruzicka@karlin.mff.cuni.cz

To the memory of Igor Slatkovský

ABSTRACT

We develop a method of representation of distributive $(\vee,0,1)$ -semilattices as semilattices of finitely generated ideals of locally matricial algebras. We use the method to reprove two representation results by G. M. Bergman and prove a new one that every distributive (0,1)-lattice is, as a semilattice, isomorphic to the semilattice of all finitely generated ideals of a locally matricial algebra. We apply this fact to solve the Γ -invariant problem.

Introduction

A lattice is strongly dense provided it possesses a cofinal continuous strictly decreasing chain (abbreviated to c.d.c.) in the poset of its nonzero elements. The dimension of a strongly dense lattice is the length of its shortest c.d.c. If a modular strongly dense lattice L has dimension \aleph_0 then L possesses either a c.d.c. $(a_m \mid n < \omega)$ such that a_n is complemented over a_m for every n < m (we say that L is complementing) or a c.d.c. $(a_m \mid n < \omega)$ such that a_n is not complemented over a_m for every n < m (then we say that the lattice L is narrow). For strongly dense lattices of uncountable dimension κ is defined an invariant, called the Γ -invariant, which is an element of $\mathcal{B}(\kappa)$, the Boolean

^{*} Research supported by grant GAUK 12/97.
Received November 1, 2001 and in revised form October 24, 2003

algebra of all subsets of κ modulo the filter generated by closed unbounded subsets. This invariant in some sense measures the failure of the lattice to be relatively complemented [ET].

Let \overline{E} denote the element of $\mathcal{B}(\kappa)$ represented by a subset E of an uncountable regular cardinal κ . By [ET, Theorem 1.3], there exists a distributive strongly dense lattice of dimension (and cardinality) κ whose Γ -invariant is \overline{E} . Furthermore, the lattice I_E of all nonzero ideals of L_E is an algebraic distributive strongly dense lattice of dimension κ with the Γ -invariant \overline{E} .

A right module over an associative ring is strongly uniform provided its submodule lattice is strongly dense. The dimension and the Γ -invariant of a strongly uniform module are defined as the dimension and the Γ -invariant of its submodule lattice. J. Trlifaj [T1] studied possible values of the dimensions and the Γ -invariants of strongly uniform modules over rings of various types. In particular, he proved that every strongly uniform module over a commutative Noetherian ring is of finite or countable dimension and that in the latter case it is narrow [T1, Theorem 2.8]. Over commutative rings [T1, Theorem 2.10] or (noncommutative) Noetherian rings [T1, Example 2.11] there are strongly uniform modules of any uncountable dimension κ , but their only possible Γ -invariant is $\overline{\kappa}$. Finally, for every regular cardinal number κ , he found an example of a module of dimension κ over a unit-regular ring. The Γ -invariants of these modules were again $\overline{\kappa}$ and he asked about all the possible values of the Γ -invariants of strongly uniform modules over non-right perfect rings, in particular, over rings which are von Neumann regular [T1, Open problem 3]. This question will be referred to as the Γ -invariant problem.

Later on, P. C. Eklof and J. Trlifaj constructed a strongly dense module of a countable dimension which is complementing and more complex examples of strongly uniform modules of an uncountable dimension over a locally semisimple algebra (which is a unit-regular ring) [ET, Theorem 2.7] but the Γ -invariant problem remained open [ET, Problem 2.3].

The Γ -invariant problem was our original motivation. We have tried to apply the following idea [ET]: A ring R is a right module over the ring $R \otimes_{\mathbb{Z}} R^{op}$ (with the multiplication given by $t(r \otimes s) = str$) and submodules of this module correspond to two-sided ideals of the ring R. In general, regularity is not preserved by this tensor product construction but if R is a locally matricial algebra, then the ring $R \otimes_{\mathbb{Z}} R^{op}$ is a locally matricial algebra as well. Thus we focused on representations of algebraic lattices as the lattices of two-sided ideals of locally matricial algebras.

It is well known that the lattice of two-sided ideals of a von Neumann regular ring is distributive. G. M. Bergman [Be] proved that every algebraic distributive lattice either isomorphic to the lattice of lower subsets of a partially ordered set or with at most countably many compact elements is isomorphic to the two-sided ideal lattice of a locally matricial algebra. In contrast, F. Wehrung [W1, W2] constructed an algebraic distributive lattice with \aleph_2 compact elements which cannot be realized as the lattice of two-sided ideals of any von Neumann regular ring. Further, he proved that if an algebraic distributive lattice has \aleph_1 compact elements, then it can be realized as the lattice of two-sided ideals of a von Neumann regular rings [W3]; however, he proved recently that the result fails for locally matricial algebras [W4].

The main result of the paper is the realization of every algebraic distributive lattice whose compact elements form a lattice as the lattice of two-sided ideals of a locally matricial algebra [GW, Problem 1]. In particular, the lattice I_E has such a realization for every subset E of a regular cardinal κ , which leads to the solution of the Γ -invariant problem.

At the same time as we achieved this result, S. Shelah and J. Trlifaj [ST] constructed, for every regular cardinal κ and every subset E of κ , a vector space V over a given field k and a k-subalgebra R of the endomorphism ring of V such that V, as an R-module, is strongly uniform of dimension κ and its Γ -invariant equals \overline{E} . However, the ring R is not von Neumann regular.

Now, let us outline the organization of the paper. In the first two sections we develop tools for realization of distributive $(\vee,0,1)$ -semilattices as semilattices of finitely generated ideals of unital locally matricial algebras. In Section 3 we use these tools to reprove Bergman's results. Section 4 is devoted to the proof of the main result and Section 5 to its application to the solution of the Γ -invariant problem.

Notation

The set of all natural numbers is denoted by ω . This notation is used also for the first infinite ordinal. Given a set M, we denote by $\mathcal{P}(M)$ the set of all subsets of M, and by $[M]^{<\omega}$ the set of all finite subsets of the set M. For a map $\varphi \colon M \to N$, we define a map $\mathcal{P}(\varphi) \colon \mathcal{P}(N) \to \mathcal{P}(M)$ by the correspondence $N' \mapsto \varphi^{-1}(N')$, where N' is a subset of N.

Let a be an element of a partially ordered set P. We use the notation

$$[a)_P = \{b \in P \mid a \le b\}, \quad (a]_P = \{b \in P \mid b \le a\}$$

for the lower, upper subset of P generated by the element a, respectively. We drop the subscript if the set P is understood.

Let **C** be a category. We denote by $\mathbf{C}(a,b)$ the set of all morphisms with domain a and codomain b. By $\mathbf{1}_a$, we denote the identity morphism of an object $a \in \mathbf{C}$. For all categories except the category \mathbf{c} defined in Section 2, identity morphisms correspond to identity maps.

Let k be a field. Recall that a family $(V_i \mid i \in I)$ of subspaces of a k-vector space V is independent if for every $i \in I$, the intersection of V_i with the subspace of V spanned by $(V_j \mid j \in I \setminus \{i\})$ is the zero subspace. Given an independent family $(V_i \mid i \in I)$ of subspaces of a k-vector space V, we denote by $\bigoplus_{i \in i} V_i$ the subspace of V spanned by all the V_i , $i \in I$. Moreover, given a family $(f_i \colon V_i \to W \mid i \in I)$ of k-linear maps, we denote by $\bigoplus_{i \in I} f_i$ the unique k-linear map f from $\bigoplus_{i \in i} V_i$ to W such that $f \mid V_i = f_i$ for every $i \in I$.

1. Distributive semilattices

Lattices of substructures, congruences, ideals, etc. of algebraic structures are algebraic lattices [Gr, II.3. Definition 12]:

- (i) Let L be a complete lattice and let a be an element of L. Then a is called **compact**, if $a \leq \bigvee X$, for some $X \subseteq L$, implies that $a \leq X_1$, for some finite $X_1 \subseteq X$.
- (ii) A complete lattice is called **algebraic**, if every element is the join of compact elements.

The set of compact elements of a complete lattice L is closed under finite joins (not under finite meets in general) and contains the zero of L. Thus it forms a $(\vee, 0)$ -semilattice, which we denote by L^c .

The ideal lattice of every $(\vee, 0)$ -semilattice is algebraic. On the other hand, every algebraic lattice L is isomorphic to $\mathrm{Id}(L^{\mathrm{c}})$, the lattice of all nonempty ideals of the $(\vee, 0)$ -semilattice L^{c} [Gr, II.3. Theorem 13].

A semilattice S is called **distributive** if $a \le b_0 \lor b_1$ $(a, b_0, b_1 \in S)$ implies the existence of $a_0, a_1 \in S$ with $a_0 \le b_0, a_1 \le b_1$ and $a = a_0 \lor a_1$ [Gr, page 131]. A $(\lor, 0)$ -semilattice S is distributive iff $\mathrm{Id}(S)$ (as a lattice) is distributive [Gr, II.5. Lemma 1, (iii)].

A nonzero element a of a distributive semilattice (resp. lattice) L is **join-irreducible**, if $a = b \lor c$ implies that either a = b or a = c for every b, $c \in L$. We denote by J(L) the set of all join-irreducible elements of L, regarded as a partially ordered set under the partial ordering of L [Gr, page 81]. A subset H of a partially ordered set P is **hereditary**, if for every $b \in H$ and every $a \in P$,

 $a \leq b$ implies that $a \in H$. We denote by H(P) the set of all hereditary subsets of P. Observe that H(P) with intersection and union as meet and join forms a distributive lattice. Every finite distributive semilattice (resp. lattice) L is isomorphic to the semilattice (resp. lattice) H(J(L)) of all hereditary subsets of J(L) partially ordered by set inclusion [Gr, II.1. Theorem 9].

A finite distributive $(\vee, 0, 1)$ -semilattice s is **Boolean**, if the order on the set J(s) is trivial, that is, if s is isomorphic to the semilattice of all subsets of a finite set.

We denote by

- s the category of all finite distributive $(\vee, 0, 1)$ -semilattices (with $(\vee, 0, 1)$ -preserving homomorphisms),
- **b** the category of all finite Boolean semilattices (with $(\vee, 0, 1)$ -preserving homomorphisms).

Given a finite distributive $(\vee, 0, 1)$ -semilattice s, we denote by Bo(s) the Boolean semilattice of all subsets of the set J(s) and, for each $f \in \mathbf{s}(s_1, s_2)$, we define a homomorphism $Bo(f) \in \mathbf{b}(Bo(s_1), Bo(s_2))$ by the rule

$$Bo(f)(X) = \{j \in J(s_2) \mid j \le f(\bigvee X)\} \quad (X \in Bo(s)).$$

Observe that Bo preserves the composition of morphisms but not the identity morphisms; indeed, $Bo(\mathbf{1}_s) = \mathbf{1}_{Bo(s)}$ iff s is Boolean.

Let s be a finite distributive $(\vee, 0, 1)$ -semilattice. We define a pair of semilattice homomorphisms $K_s: s \to Bo(s)$ and $L_s: Bo(s) \to s$ by

$$K_s(x) = \{ j \in J(s) \mid j \le x \} \quad (x \in s)$$

and

$$L_s(X) = \bigvee X \quad (X \in Bo(s)).$$

Observe that

$$(1.1) L_s \circ K_s = \mathbf{1}_s$$

and that for every homomorphism $f \in \mathbf{s}(s_1, s_2)$ the equalities

$$(1.2) Bo(f) \circ K_{s_1} = K_{s_2} \circ f,$$

$$(1.3) f \circ L_{s_1} = L_{s_2} \circ Bo(f)$$

and

$$(1.4) K_{s_2} \circ f \circ L_{s_1} = Bo(f)$$

hold.

PROPOSITION 1.1: Let P be an upwards directed partially ordered set without maximal elements and let

$$\langle s_p, f_{p,q} \rangle_{p \leq q \text{ in } P}$$

be a direct system in s. If

$$\langle S, f_p \rangle_{p \in P} = \varinjlim \langle s_p, f_{p,q} \rangle_{p \le q \text{ in } P},$$

then

$$\langle S, f_p \circ L_{s_p} \rangle_{p \in P} = \lim_{\longrightarrow} \langle Bo(s_p), Bo(f_{p,q}) \rangle_{p < q \text{ in } P}.$$

Proof: For all $p \in P$, put $L_p = L_{s_p}$, $K_p = K_{s_p}$, and $g_p = f_p \circ L_{s_p}$. For each pair p < q in P, set $g_{p,q} = Bo(f_{p,q})$.

For all p < q in P,

$$g_p = f_p \circ L_p = f_q \circ f_{p,q} \circ L_p = f_q \circ L_q \circ g_{p,q} = g_q \circ g_{p,q},$$

by (1.3). Let $\langle T, g_p' \rangle_{p \in P}$ be such that for every p < q in P,

$$g_p' = g_q' \circ g_{p,q}.$$

We show that there exists exactly one $(\vee, 0, 1)$ -semilattice homomorphism $h: S \to T$ such that $h \circ g_p = g'_p$ for every $p \in P$.

Put $f_p' = g_p' \circ K_p$ for all $p \in P$. Then

$$f_q'\circ f_{p,q}=g_q'\circ K_q\circ f_{p,q}=g_q'\circ g_{p,q}\circ K_p=g_p'\circ K_p=f_p'$$

for every p < q in P by (1.2). Then, since $\langle S, f_p \rangle_{p \in P}$ is a direct limit of the direct system $\langle s_p, f_{p,q} \rangle_{p \leq q}$ in P, there exists a unique homomorphism $h: S \to T$ such that

$$h \circ f_p = f_p'$$

for every $p \in P$. It follows that for every p < q in P,

$$\begin{split} h \circ g_p &= h \circ f_p \circ L_p = f_p' \circ L_p = g_p' \circ K_p \circ L_p = g_q' \circ g_{p,q} \circ K_p \circ L_p \\ &= g_q' \circ K_q \circ f_{p,q} \circ L_p = g_q' \circ g_{p,q} = g_p' \end{split}$$

(the 5th equality is due to (1.2), the 6th equality is due to (1.4)). Suppose that $h': S \to T$ is a $(\vee, 0, 1)$ -semilattice homomorphism satisfying $h' \circ g_p = g'_p$ for every $p \in P$. Then

$$h' \circ g_p \circ K_p = g'_p \circ K_p \quad (p \in P),$$

hence

$$h' \circ f_p \circ L_p \circ K_p = f'_p \quad (p \in P),$$

and so, by (1.1),

$$h' \circ f_p = f'_p$$

for every $p \in P$. It follows that h = h'.

P. Pudlák [Pu] proved that every distributive $(\lor,0)$ -semilattice is the directed union of all its finite distributive $(\lor,0)$ -subsemilattices. Consequently, every distributive $(\lor,0,1)$ -semilattice is a direct limit of a direct system \mathcal{S} of finite distributive semilattices and $(\lor,0,1)$ -preserving embeddings. Furthermore, we can assume that \mathcal{S} is indexed by an upwards directed partially ordered set without maximal elements. Then, as a corollary of Proposition 1.1, we obtain the following result of K. R. Goodearl and F. Wehrung [GW, Theorem 6.6].

COROLLARY 1.2: Every distributive $(\vee, 0, 1)$ -semilattice is a direct limit of Boolean semilattices (and $(\vee, 0, 1)$ -preserving homomorphisms).

2. The category c

All rings are associative with a unit element; all ring homomorphisms are supposed to preserve the unit. For a ring R, we denote by $\mathrm{Id}(R)$ the lattice of two-sided ideals of R and by $\mathrm{Id}^{c}(R)$ the semilattice of compact elements of the lattice $\mathrm{Id}(R)$, that is, the semilattice of finitely generated two-sided ideals of R. Notice that $\mathrm{Id}^{c}(R)$ is a $(\vee, 0, 1)$ -semilattice.

Given a ring homomorphism $\varphi: R \to S$, we define a map $\mathrm{Id}^{\mathrm{c}}(\varphi): \mathrm{Id}^{\mathrm{c}}(R) \to \mathrm{Id}^{\mathrm{c}}(S)$ by the correspondence

$$(2.1) I \mapsto S\varphi(I)S.$$

The map $\operatorname{Id}^{c}(\varphi)$ is a $(\vee, 0, 1)$ -semilattice homomorphism, and it is straightforward to verify that Id^{c} is a direct limit preserving functor from the category of rings to the category of $(\vee, 0, 1)$ -semilattices.

The following example shows that it is not possible to define, in a similar way, a functor Id from the category of rings to the category of all algebraic lattices.

Example 2.1: Let k be a field, let $R = k \times k$ and $S = k \times M_2(k)$ be k-algebras. Put $e_1 = (1,0), e_2 = (0,1),$ and

$$f = \left(1, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\right), \quad g_1 = \left(0, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right), \quad g_2 = \left(0, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right).$$

Denote by I_1, I_2 the two-sided ideals of R generated by primitive idempotents e_1, e_2 , respectively, and by J the two-sided ideal of S generated by g_2 . Let

8 P. RŮŽIČKA Isr. J. Math.

 $\varphi \colon R \to S$ be the ring homomorphism defined on the generators e_1 , e_2 of R by $\varphi(e_1) = f + g_1$, $\varphi(e_2) = g_2$. Then correspondence (2.1) assigns to the ideal I_1 the whole ring S and the ideal I_2 is mapped to J. Since $I_1 \cap I_2 = 0$, while $S \cap J = J$, the map Id^c does not preserve finite meets.

Let k be a field. A matricial k-algebra R is a k-algebra of the form

$$\mathbb{M}_{p(1)}(k) \times \cdots \times \mathbb{M}_{p(n)}(k)$$

for some natural numbers $p(1), \ldots, p(n)$ [Go, page 217]. The semilattice $\operatorname{Id}^{c}(R)$ of all finitely generated two-sided ideals of the matricial algebra R is isomorphic to the Boolean semilattice of all subsets of the set $\{1, \ldots, n\}$. We fix a field k and denote by m the category of all matricial k-algebras. Recall that a k-algebra is locally matricial provided it is a direct limit of matricial k-algebras.

In this section we shall define a new category \mathbf{c} and a pair of functors $A: \mathbf{c} \to \mathbf{m}$ and $\Lambda: \mathbf{c} \to \mathbf{s}$ such that there is a natural isomorphism $\eta: \mathrm{Id}^{\mathbf{c}} A \to \Lambda$.

Definition: An object B of the category c consists of a finite set I and a family $(B^i \mid i \in I)$ of nonempty pairwise disjoint finite sets.

Let $B_1 = (B_1^i \mid i \in I_1)$, $B_2 = (B_2^j \mid j \in I_2)$ be objects of the category c. A **premorphism** $B_1 \to B_2$ is a pair (C,h), where $C = (C^{i,j} \mid i \in I_1, j \in I_2)$ is a family of (possibly empty) finite sets and $h = (h^j \mid j \in I_2)$ is a family of bijections

$$h^j : \bigcup_{i \in I_1} (C^{i,j} \times B_1^i) \xrightarrow{\simeq} B_2^j.$$

We denote by $\mathbf{c}'(B_1, B_2)$ the collection of all premorphisms $B_1 \to B_2$.

We say that premorphisms (C,h), $(\widetilde{C},\widetilde{h}) \in \mathbf{c}'(B_1,B_2)$ are equivalent (we write $(C,h) \sim (\widetilde{C},\widetilde{h})$) if there is a collection $(g^{i,j} : C^{i,j} \to \widetilde{C}^{i,j} \mid i \in I_1, j \in I_2)$ of maps such that for every $i \in I_1, j \in I_2$, and for every $c \in C^{i,j}, b \in B^i$,

(2.2)
$$h^j(c,b) = \widetilde{h}^j(g^{i,j}(c),b).$$

Observe that the maps $g^{i,j}$, $i \in I_1$, $j \in I_2$ satisfying (2.2) are necessarily bijections. The morphisms in **c** are the equivalence classes with respect to the equivalence relation \sim , that is

$$\mathbf{c}(B_1, B_2) = \mathbf{c}'(B_1, B_2) / \sim$$
.

We denote by [C, h], or sometimes [(C, h)], the equivalence class represented by the premorphism (C, h). We say that [C, h] is a morphism from B_1 to B_2 .

Now we shall define the composition of morphisms in c. First we describe how the premorphisms are composed. For objects $B_1 = (B_1^i \mid i \in I_1), B_2 = (B_2^j \mid j \in I_2), B_3 = (B_3^k \mid k \in I_3)$ of the category c and premorphisms $(C_1, h_1) \in \mathbf{c}'(B_1, B_2), (C_2, h_2) \in \mathbf{c}'(B_2, B_3)$, the composition $(C, h) = (C_2, h_2) \circ (C_1, h_1)$ consists of the family $C = (C^{i,k} \mid i \in I_1, k \in I_3)$ of sets, resp. a family $h = (h^k \mid k \in I_3)$ of maps defined by

$$C^{i,k} = \bigcup_{j \in I_2} (C_2^{j,k} \times C_1^{i,j})$$

for every $i \in I_1$, $k \in I_3$, resp.

$$h^k((c_2, c_1), b) = h_2^k(c_2, h_1^j(c_1, b))$$

for every $b \in B_1^i$, $c_1 \in C_1^{i,j}$, $c_2 \in C_2^{j,k}$, where $i \in I_1$, $j \in I_2$, and $k \in I_3$.

LEMMA 2.2: Let $B_1 = (B_1^i \mid i \in I_1), B_2 = (B_2^j \mid j \in I_2), \text{ and } B_3 = (B_3^k \mid k \in I_3)$ be objects of the category \mathbf{c} . Let $(C_1, h_1), (\widetilde{C}_1, \widetilde{h}_1) \in \mathbf{c}'(B_1, B_2)$ and $(C_2, h_2), (\widetilde{C}_2, \widetilde{h}_2) \in \mathbf{c}'(B_2, B_3)$. If $(C_1, h_1) \sim (\widetilde{C}_1, \widetilde{h}_1)$ and $(C_2, h_2) \sim (\widetilde{C}_2, \widetilde{h}_2)$, then

$$(C_2, h_2) \circ (C_1, h_1) \sim (\widetilde{C}_2, \widetilde{h}_2) \circ (\widetilde{C}_1, \widetilde{h}_1).$$

Proof: Since $(C_1, h_1) \sim (\widetilde{C}_1, \widetilde{h}_1)$, there are maps

$$g_1^{i,j}: C_1^{i,j} \to \widetilde{C}_1^{i,j} \quad (i \in I_1, j \in I_2)$$

such that for every $b \in B_1^i$ and $c \in C_1^{i,j}$,

$$h_1^j(c,b) = \widetilde{h}_1^j(g_1^{i,j}(c),b).$$

Similarly, since $(C_2, h_2) \sim (\widetilde{C}_2, \widetilde{h}_2)$, there are maps

$$g_2^{j,k}\colon C_2^{j,k}\to \widetilde{C}_2^{j,k}\quad (j\in I_2,\ k\in I_3)$$

such that for every $b \in B_2^j$ and $c \in C_2^{j,k}$,

$$h_2^k(c,b) = \widetilde{h}_2^k(g_2^{j,k}(c),b).$$

We put

$$g^{i,k} = \bigcup_{i \in I_2} (g_2^{j,k} \times g_1^{i,j}) \quad (i \in I_1, \ k \in I_3),$$

and we denote by (C, h), resp. $(\widetilde{C}, \widetilde{h})$ the composition $(C_2, h_2) \circ (C_1, h_1)$, resp. $(\widetilde{C}_2, \widetilde{h}_2) \circ (\widetilde{C}_1, \widetilde{h}_1)$. Then for every $b \in B_1^i$, $c_1 \in C_1^{i,j}$, and $c_2 \in C_2^{j,k}$, where $i \in I_1, j \in I_2$, and $k \in I_3$,

$$h^{k}((c_{2},c_{1}),b) = h_{2}^{k}(c_{2},h_{1}^{j}(c_{1},b)) = \widetilde{h}_{2}^{k}(g_{2}^{j,k}(c_{2}),\widetilde{h}_{1}^{j}(g_{1}^{i,j}(c_{1}),b))$$
$$= \widetilde{h}^{k}((g_{2}^{j,k}(c_{2}),g_{1}^{i,j}(c_{1})),b) = \widetilde{h}^{k}(g^{i,k}(c_{2},c_{1}),b).$$

Let (C_2, h_2) , (C_1, h_1) be premorphisms as above. Lemma 2.2 enables us to define

$$[(C_2, h_2) \circ (C_1, h_1)] = [(C_2, h_2)] \circ [(C_1, h_1)].$$

It remains to prove that the composition is associative and that every object of c possesses an identity morphism.

LEMMA 2.3: The composition of morphisms is associative, that is, let $B_n = (B_n^i \mid i \in I_n)$, n = 1, ..., 4, be objects of the category \mathbf{c} and let $[C_n, h_n] \in \mathbf{c}(B_n, B_{n+1})$ for n = 1, 2, 3. Then

$$[C_3, h_3] \circ ([C_2, h_2] \circ [C_1, h_1]) = ([C_3, h_3] \circ [C_2, h_2]) \circ [C_1, h_1].$$

Proof: Put

$$(C,h) = (C_3,h_3) \circ ((C_2,h_2) \circ (C_1,h_1))$$

and

$$(\widetilde{C}, \widetilde{h}) = ((C_3, h_3) \circ (C_2, h_2)) \circ (C_1, h_1).$$

We prove that

$$(2.3) (C,h) \sim (\widetilde{C},\widetilde{h}).$$

It follows from the definition that for every $i \in I_1$, and $l \in I_4$,

$$C^{i,l} = \bigcup_{k \in I_3} \left(C_3^{k,l} \times \left(\bigcup_{j \in I_2} (C_2^{j,k} \times C_1^{i,j}) \right) \right) = \bigcup_{j \in I_2} \bigcup_{k \in I_3} (C_3^{k,l} \times (C_2^{j,k} \times C_1^{i,j})),$$

while

$$\widetilde{C}^{i,l} = \bigcup_{j \in I_2} \left(\left(\bigcup_{k \in I_3} (C_3^{k,l} \times C_2^{j,k}) \right) \times C_1^{i,j} \right) = \bigcup_{j \in I_2} \bigcup_{k \in I_3} ((C_3^{k,l} \times C_2^{j,k}) \times C_1^{i,j}).$$

It is straightforward to verify that for every $b \in B_1^i$, $c_1 \in C_1^{i,j}$, $c_2 \in C_2^{j,k}$, and $c_3 \in C_3^{k,l}$, where $i \in I_1$, $j \in I_2$, $k \in I_3$, and $l \in I_4$, the equality

$$(2.4) h^{l}((c_{3},(c_{2},c_{1})),b) = h^{l}_{3}(c_{3},h^{k}_{2}(c_{2},h^{j}_{1}(c_{1},b))) = \tilde{h}^{l}(((c_{3},c_{2}),c_{1}),b)$$

holds. Finally, for all $i \in I_1$ and $l \in I_4$, define a bijection $g^{i,l}: C^{i,l} \to \widetilde{C}^{i,l}$ by the correspondence $(c_3, (c_2, c_1)) \mapsto ((c_3, c_2), c_1)$. Then, due to (2.4), for every $b \in B_1^i$ and every $c \in C^{i,l}$,

$$h^l(c,b) = \widetilde{h}^l(g^{i,l}(c),b).$$

This proves (2.3).

Given an object $B = (B^i \mid i \in I)$ in the category c, we put

$$C^{i,j} = \begin{cases} \emptyset, & \text{if } i \neq j \\ \{i\}, & \text{if } i = j \end{cases}$$

for every $i, j \in I$ and we define maps $h^j, j \in I$, from $\bigcup_{i \in I} (C^{i,j} \times B^i) = \{j\} \times B^j$ to B^j by the correspondence $(j, b) \mapsto b$.

LEMMA 2.4: The map (C,h) is an identity morphism of the object B.

Proof: Let $B_0 = (B_0^i \mid i \in I_0)$ be an object in the category \mathbf{c} and let $(C_0, h_0) \in \mathbf{c}'(B_0, B)$. Denote by $(\widetilde{C}_0, \widetilde{h}_0)$ the composition $(C, h) \circ (C_0, h_0)$. We prove that

(2.5)
$$(\widetilde{C}_0, \widetilde{h}_0) \sim (C_0, h_0).$$

By the definition, for every $i \in I_0$, and $j \in I$,

$$\tilde{C}_0^{i,j} = C^{j,j} \times C_0^{i,j} = \{j\} \times C_0^{i,j},$$

and for every $b \in B_0^i$ and $c \in C_0^{i,j}$,

(2.6)
$$\widetilde{h}_0^j((j,c),b) = h^j(j,h_0^j(c,b)) = h_0^j(c,b).$$

For all $i \in I_0$, $j \in I$, define a map $g^{i,j} : C_0^{i,j} \to \widetilde{C}_0^{i,j}$ by the correspondence $c \mapsto (j,c)$. It follows from (2.6) that for every $b \in B_0^i$ and $c \in C_0^{i,j}$,

$$h_0^j(c,b) = \widetilde{h}_0^j(g^{i,j}(c),b).$$

This proves (2.5).

On the other hand, let $B_1 = (B_1^j \mid j \in I_1)$ be an object of the category \mathbf{c} and let $(C_1, h_1) \in \mathbf{c}'(B, B_1)$. Denote by $(\widetilde{C}_1, \widetilde{h}_1)$ the composition $(C_1, h_1) \circ (C, h)$. We prove that

$$(C_1, h_1) \sim (\widetilde{C}_1, \widetilde{h}_1).$$

Let $i \in I$, and $j \in I_1$. By the definition,

$$\widetilde{C}_1^{i,j} = C_1^{i,j} \times C^{i,i} = C_1^{i,j} \times \{i\},\,$$

and for every $b \in B^i$, $c \in C_1^{i,j}$,

(2.8)
$$\widetilde{h}_1^j((c,i),b) = h_1^j(c,h^i(i,b)) = h_1^j(c,b).$$

For all $c \in C_1^{i,j}$, define $g^{i,j}(c) = (c,i)$. Then, by (2.8), for every $b \in B^i$ and $c \in C_1^{i,j}$,

$$h_1^j(c,b) = \widetilde{h}_1^j(g^{i,j}(c),b).$$

This proves (2.7).

Now we know that \mathbf{c} is a category. The next step is to define a functor, which we shall denote by A, from the category \mathbf{c} to the category \mathbf{m} of matricial algebras. Let $B = (B_i \mid i \in I)$ be an object of the category \mathbf{c} . For all $i \in I$, denote by $V(B^i)$ the vector space with basis B^i , and let $V(B) = \bigoplus_{i \in I} V(B^i)$ be the vector space with basis B (note that since the sets B_i , $i \in I$, are disjoint, the family $(V(B_i) \mid i \in I)$ of vector spaces is independent). Define

$$A(B) = \{ \alpha \in \operatorname{End}(V(B)) \mid \forall i \in I : \alpha(V(B^i)) \subseteq V(B^i) \}.$$

For all $\alpha \in \operatorname{End}(V(B))$, denote by α^i the restriction $\alpha \upharpoonright V(B^i)$. Observe that A(B) is a matricial algebra isomorphic to $\prod_{i \in I} \operatorname{End}(V(B^i))$.

Let (C,h): $B_1 \to B_2$ be a premorphism in the category \mathbf{c} . For all $i \in I_1$, $j \in I_2$, denote by $V(C^{i,j})$ the vector space with basis $C^{i,j}$. For every $j \in I_2$, the bijection

$$h^j : \bigcup_{i \in I_1} (C^{i,j} \times B_1^i) \xrightarrow{\simeq} B_2^j$$

induces an isomorphism

$$\phi^j \colon \bigoplus_{i \in I_1} (V(C^{i,j}) \otimes V(B_1^i)) \xrightarrow{\simeq} V(B_2^j).$$

For all $\alpha \in A(B_1)$, set

(2.9)
$$A(C,h)(\alpha) = \bigoplus_{i \in I_2} \phi^j \circ \left(\bigoplus_{i \in I_1} (\mathbf{1}_{V(C^{i,j})} \otimes \alpha^i) \right) \circ (\phi^j)^{-1}.$$

Observe that $A(C,h)(\alpha)^j$ is an endomorphism of the vector space $V(B_2^j)$ for every $j \in I_2$, and so $A(C,h)(\alpha) \in A(B_2)$.

LEMMA 2.5: Let B_1 , B_2 be objects of the category \mathbf{c} and let $(C, h) \in \mathbf{c}(B_1, B_2)$. Then $A(C, h): A(B_1) \to A(B_2)$ is a homomorphism of unitary k-algebras.

Proof: It suffices to verify that for every $\alpha, \beta \in A(B_1)$ and for every element t of the field k,

$$A(C,h)(\alpha + \beta) = A(C,h)(\alpha) + A(C,h)(\beta),$$

$$A(C,h)(\alpha \circ \beta) = A(C,h)(\alpha) \circ A(C,h)(\beta),$$

$$A(C,h)(t\alpha) = tA(C,h)(\alpha),$$

and

$$A(C,h)(\mathbf{1}_{V(B_1)}) = \mathbf{1}_{V(B_2)}.$$

But all these equalities are clear from the definition.

LEMMA 2.6: Let B_1 , B_2 be objects of the category \mathbf{c} and let (C,h), $(\widetilde{C},\widetilde{h}) \in \mathbf{c}'(B_1,B_2)$. If $(C,h) \sim (\widetilde{C},\widetilde{h})$, then $A(C,h) = A(\widetilde{C},\widetilde{h})$.

Proof: Since $(C, h) \sim (\widetilde{C}, \widetilde{h})$, there are bijections $g^{i,j} \colon C^{i,j} \xrightarrow{\simeq} \widetilde{C}^{i,j}$ such that for every $b \in B_1^i$, $c \in C^{i,j}$,

$$\widetilde{h}^{j}(g^{i,j}(c),b) = h^{j}(c,b) \quad (i \in I_1, \ j \in I_2).$$

The bijections $g^{i,j}$ induce isomorphisms $\gamma^{i,j}: V(C^{i,j}) \to V(\widetilde{C}^{i,j})$ satisfying

$$\widetilde{\phi}^j \circ \left(\bigoplus_{i \in I_1} (\gamma^{i,j} \otimes \mathbf{1}_{V(B_1^i)}) \right) = \phi^j,$$

and

$$\left(\bigoplus_{i\in I_1} (\gamma^{i,j^{-1}}\otimes \mathbf{1}_{V(B_1^i)})\right) \circ (\widetilde{\phi}^j)^{-1} = (\phi^j)^{-1}$$

for every $j \in I_2$. Substituting in (2.9), a straightforward computation leads to the equality $A(C,h)(\alpha) = A(\widetilde{C},\widetilde{h})(\alpha)$ for every $\alpha \in A(B_1)$.

We define A([C,h]) = A(C,h) for every morphism $[C,h] \in \mathbf{c}(B_1,B_2)$. In order to prove that A is a functor we have to verify that it preserves both the composition of morphisms and the identity morphisms.

LEMMA 2.7: The functor A preserves the composition of morphisms. In particular, let $B_n = (B_n^i \mid i \in I_n)$, n = 1, 2, 3, be objects of the category \mathbf{c} and let $(C_1, h_1) \in \mathbf{c}'(B_1, B_2)$, $(C_2, h_2) \in \mathbf{c}'(B_2, B_3)$ be premorphisms. Then

$$A((C_2, h_2) \circ (C_1, h_1)) = A(C_2, h_2) \circ A(C_1, h_1).$$

Proof: Denote by (C, h) the composition $(C_2, h_2) \circ (C_1, h_1)$. Recall that for every $i \in I_1, k \in I_3$,

$$C^{i,k} = \bigcup_{j \in I_2} (C_2^{j,k} \times C_1^{i,j})$$

and for every $b \in B_1^i$, $c_1 \in C_1^{i,j}$, and $c_2 \in C_2^{j,k}$, where $i \in I_1$, $j \in I_2$ and $k \in I_3$,

$$h^k((c_2, c_1), b) = h_2^k(c_2, h_1^j(c_1, b)).$$

It follows that

$$\phi^k((c_2\otimes c_1)\otimes b)=\phi_2^k(c_2\otimes \phi_1^j(c_1\otimes b)),$$

14 P. RŮŽIČKA Isr. J. Math.

where ϕ_1^j , ϕ_2^k , ϕ^k are the vector space isomorphisms induced by the maps h_1^j , h_2^k , h^k , respectively. Thus, for every $k \in I_3$,

$$\phi^k = \phi_2^k \circ \left(\bigoplus_{j \in I_2} (\mathbf{1}_{V(C_2^{j,k})} \otimes \phi_1^j) \right) \circ \theta^k,$$

where θ^k is the "corrective" homomorphism induced by the correspondence

$$(c_2 \otimes c_1) \otimes b \mapsto c_2 \otimes (c_1 \otimes b)$$

(here again $b \in B_1^i$, $c_1 \in C_1^{i,j}$, $c_2 \in C_2^{j,k}$).

Let $k \in I_3$. Put $\psi_1^k = (\bigoplus_{j \in I_2} (1_{V(C_2^{j,k})} \otimes \phi_1^j)) \circ \theta^k$, and compute that for every $\alpha \in A(B_1)$,

$$(2.10) \quad \psi_1^k \circ \left(\bigoplus_{i \in I_1} (\mathbf{1}_{V(C^{i,k})} \otimes \alpha^i) \right) \circ \psi_1^{k-1} = \bigoplus_{j \in I_2} (\mathbf{1}_{V(C_2^{j,k})} \otimes A(C_1, h_1)(\alpha)^j).$$

Composing the morphisms in equality (2.10) with ϕ_2^k , resp. $(\phi_2^k)^{-1}$ from the left, resp. right hand side, we get that

$$A(C,h)(\alpha)^k = A(C_2,h_2)(A(C_1,h_1)(\alpha))^k$$
.

LEMMA 2.8: Let $B = (B^i \mid i \in I)$ be an object of the category c. If [C, h] is the identity morphism on B, then $A(C, h) = \mathbf{1}_{A(B)}$.

Proof: Let $B_1 = (B_1^j \mid j \in I_1)$ be an object of the category \mathbf{c} and $(C_1, h_1) \in \mathbf{c}'(B, B_1)$ a premorphism such that $C_1^{i,j} \neq \emptyset$ for every $i \in I$, $j \in I_1$. Then the homomorphism $A(C_1, h_1)$ is one-to-one, and by Lemmas 2.4, 2.6 and 2.7,

$$A(C_1, h_1) \circ A(C, h) = A((C_1, h_1) \circ (C, h)) = A(C_1, h_1).$$

It follows that $A(C,h) = \mathbf{1}_{A(B)}$.

We define a functor $\Lambda: \mathbf{c} \to \mathbf{b}$ as follows: For each object $B = (B^i \mid i \in I)$, we define $\Lambda(B)$ to be the power-set semilattice $\mathcal{P}(I)$ of the set I. Given a premorphism $(C,h) \in \mathbf{c}'(B_1,B_2)$, we define a $(\vee,0,1)$ -semilattice homomorphism $\Lambda(C,h): \Lambda(B_1) \to \Lambda(B_2)$ by the rule

$$J \mapsto \left\{ j \in I_2 \mid \bigcup_{i \in J} C^{i,j} \neq \emptyset \right\} \quad (J \in \mathcal{P}(I_1)).$$

It is clear that $(C,h) \sim (\widetilde{C},\widetilde{h})$ implies that $\Lambda(C,h) = \Lambda(\widetilde{C},\widetilde{h})$. Thus we are entitled to define $\Lambda([C,h]) = \Lambda(C,h)$.

Any two-sided ideal of a matricial algebra is principal. For every $\alpha \in A(B)$, we denote by $\langle \alpha \rangle$ the two-sided ideal generated by the homomorphism α . Then the rule

$$\langle \alpha \rangle \mapsto \{ i \in I \mid \alpha^i \neq 0 \}$$

defines an isomorphism $\eta_B \colon \operatorname{Id}^{\operatorname{c}} A(B) \to \Lambda(B)$.

LEMMA 2.9: The isomorphism η : Id^c $A \to \Lambda$ is natural.

Proof: We prove that for every $(C,h) \in \mathbf{c}'(B_1,B_2)$, the diagram

commutes. Let $j \in I_2$ and $\alpha \in A(B_1)$. Then

$$\Lambda(C,h) \circ \eta_{B_1}(\langle \alpha \rangle) = \{ j \in I_2 \mid \exists i \in I_1 : \alpha^i \neq 0 \& C^{i,j} \neq \emptyset \}.$$

Set $\beta = A(C, h)(\alpha)$. Then

$$\eta_{B_2} \circ \operatorname{Id}^{\operatorname{c}} A(C, h)(\langle \alpha \rangle) = \eta_{B_2}(\langle \beta \rangle) = \{ j \in I_2 \mid \beta^j \neq 0 \}$$

and, by the definition, for every $j \in I_2$,

$$\beta^j = \phi^j \circ \left(\bigoplus_{i \in I_1} (\mathbf{1}_{V(C^{i,j})} \otimes \alpha^i) \right) \circ \phi^{j-1},$$

where ϕ^j is the isomorphism induced by the bijection h^j . Then $\beta^j \neq 0$ iff

$$\bigoplus_{i\in I_1} (\mathbf{1}_{V(C^{i,j})} \otimes \alpha^i) \neq 0$$

iff there is $i \in I_1$ such that $\alpha^i \neq 0$ and $C^{i,j} \neq \emptyset$.

Definition: Let $f: s_1 \to s_2$ be a homomorphism in s. Let B_1 , B_2 be objects of the category B and let $\varepsilon_i: I_i \to J(s_i)$, i = 1, 2, be isomorphisms of posets. We say that a morphism $[C, h] \in \mathbf{c}(B_1, B_2)$ is f-induced with respect to ε_1 , ε_2 if the diagram

$$Bo(s_1) \xrightarrow{Bo(f)} Bo(s_2)$$

$$\downarrow^{\mathcal{P}(\varepsilon_1)} \downarrow \qquad \qquad \downarrow^{\mathcal{P}(\varepsilon_2)}$$

$$\Lambda(B_1) \xrightarrow{\Lambda([C,h])} \Lambda(B_2)$$

commutes.

Observe that the morphism [C, h] is f-induced with respect to ε_1 , ε_2 if and only if $C^{i,j} \neq 0$ iff $f(\varepsilon_1(i)) \geq \varepsilon_2(j)$ for every $i \in I_1$, $j \in I_2$.

PROPOSITION 2.10: Let P be a partially ordered upwards directed set without maximal elements. Let

$$\langle s_p, f_{p,q} \rangle_{p \leq q \text{ in } P}$$

be a direct system in s. Let

$$\langle B_p, [C_{p,q}, h_{p,q}] \rangle_{p < q \text{ in } P}$$

be a direct system in the category \mathbf{c} and $(\varepsilon_p: I_p \to J(s_p) \mid p \in P)$ a family of bijections such that $[C_{p,q}, h_{p,q}]$ is a $f_{p,q}$ -induced morphism with respect to ε_p , ε_q for every p < q in P. If R is a direct limit of the diagram

$$\langle A(B_p), A([C_{p,q}, h_{p,q})) \rangle_{p < q \text{ in } P},$$

then $\mathrm{Id}^{\mathrm{c}}(R)$ is isomorphic to $\varinjlim \langle s_p, f_{p,q} \rangle_{p \leq q}$ in $_P$.

Proof: This follows from Proposition 1.1 and the fact that the functor Id^c commutes with direct limits. ■

3. Bergman's theorems

The purpose of this section is to illustrate the effectiveness of the tools developed in Sections 1 and 2. The results proved here are not going to be used later in the paper. We reprove the two main results from the unpublished notes by G. M. Bergman [Be]. Different proofs of the first of them were published in [GW]. It states that every countable distributive $(\vee, 0, 1)$ -semilattice is isomorphic to the semilattice of finitely generated two-sided ideals of a locally matricial algebra. As far as I know, the second theorem has never been published. It is the following assertion: Every strongly distributive $(\vee, 0, 1)$ -semilattice is isomorphic to the semilattice of finitely generated ideals of a locally matricial algebra. A $(\vee, 0)$ -semilattice is **strongly distributive** provided every element is a join of join irreducible elements. The ideal lattices of strongly distributive $(\vee, 0)$ -semilattices are characterized as the lattices of all hereditary subsets of partially ordered sets [Be]. A strongly distributive $(\vee, 0)$ -semilattice has a unit element if and only if the corresponding partially ordered set P has finitely many maximal elements and every element of P is under one of them [Be].

THEOREM 3.1: Every countable distributive $(\vee, 0, 1)$ -semilattice is isomorphic to the semilattice of finitely generated two-sided ideals of a unital locally matricial algebra.

Proof: Let S be a countable distributive $(\vee, 0, 1)$ -semilattice. By a theorem of P. Pudlák, the semilattice S is the directed union of its finite distributive $(\vee, 0, 1)$ -subsemilattices [Pu]. Since S is countable, there is a countable sequence

$$s_0 \subset s_1 \subset s_2 \subset \cdots$$

of finite $(\vee, 0, 1)$ -semilattices such that $S = \bigcup_{i \in \omega} s_i$. Put $I_n = J(s_n)$ and, for all $n \leq m$ in ω , denote by $f_{n,m}$ the inclusion map $s_n \to s_m$.

For each $n \in \omega$ and $i \in I_n$, put

$$B_n^i = \{(i_0, \dots, i_n) \in I_0 \times \dots \times I_n \mid i_0 \ge \dots \ge i_n = i\}.$$

Given n < m in ω , set

$$C_{n,m}^{i,j} = \{(i_n, \dots, i_m) \in I_n \times \dots \times I_m \mid i = i_n \ge \dots \ge i_m = j\} \quad (i \in I_n, \ j \in I_m)$$

and for every $j \in I_m$, define an isomorphism $h_{n,m}^j : \bigcup_{i \in I_n} (C_{n,m}^{i,j} \times B_n^i) \to B_m^j$ by the rule

$$((i_n,\ldots,i_m),(i_0,\ldots,i_n))\mapsto (i_0,\ldots,i_m).$$

We verify that

- (i) for every $n \in \omega$, for every $i \in I_n$, $B_n^i \neq 0$,
- (ii) if n < m, then for every $i \in I_n$, $j \in I_m$, $C_{n,m}^{i,j} \neq 0$ iff $i \geq j$.
- Ad (i): Let $n \in \omega$. It suffices to prove that for every $i \in I_{n+1}$ there exists $j \geq i$ in I_n . Since $\bigvee I_n = 1 \geq i$ and i is join irreducible, there is $j \in I_n$ with $j \geq i$ and we are done.
- Ad (ii): Let n < m in ω . Let $i \in I_n$ and $j \in I_m$ satisfy $i \geq j$. Then there exist $k_0, \ldots, k_{t-1} \in I_{n+1}$ with $i = k_0 \vee \cdots \vee k_{t-1}$, and since $i \geq j$ and j is join irreducible, $k_s \geq j$ for some s < t. Thus $i \geq k \geq j$ for some $k \in I_{n+1}$. By induction we prove that if $i \geq j$, then $C_{n,m}^{i,j} \neq 0$. The converse implication is clear from the definition.

Having verified (i), it is clear that

$$\langle B_n, [C_{n,m}, h_{n,m}] \rangle_{n < m \text{ in } \omega}$$

is a direct system in **c**. It follows from (ii) that for every n < m in ω , $\Lambda([C_{n,m}, h_{n,m}]) = Bo(f_{n,m})$, that is, $[C_{n,m}, h_{n,m}]$ is an $f_{n,m}$ -induced morphism with respect to identity maps. Now we apply Proposition 2.10.

THEOREM 3.2: Every strongly distributive $(\vee, 0, 1)$ -semilattice is isomorphic to the semilattice of finitely generated ideals of a unital locally matricial algebra.

Proof: Let S be a strongly distributive $(\vee, 0)$ -semilattice. Then there is a partially ordered set Q such that S is isomorphic to the semilattice of compact elements of the lattice H(Q), that is,

$$S \simeq \{ (F] \mid F \in [Q]^{<\omega} \}.$$

The semilattice S has a greatest element if and only if Q = (M] for some finite subset M of Q (i.e., if for every $q \in Q$ there is $m \in M$ with $q \leq m$). Put

$$K = \{ F \in [Q]^{<\omega} \mid M \subseteq F \}$$

and $P = K \times \omega$. Define an order relation on the set P by (I, n) < (J, m) if $I \subseteq J$ and n < m. Observe that P is upwards directed without maximal elements.

Given a pair $p=(I_p,n)\leq q=(I_q,m)$ in P, let $f_{p,q}\colon H(I_p)\to H(I_q)$ denote the semilattice homomorphism given by $f_{p,q}((i]_{I_p})=(i]_{I_q}$ for every $i\in I_p$. The homomorphism $f_{p,q}$ preserves 0 and 1 and

$$S = \lim_{\longrightarrow} \langle H(I_p), f_{p,q} \rangle_{p \leq q \text{ in } P}.$$

Let $p=(I_p,n)\in P$. For each $i\in I_p$, let B_p^i be the set of pairs $(\underline{n},\underline{i})$, where $\underline{n}=(n_1,\ldots,n_s)$ is a sequence of natural numbers not bigger than n and $\underline{i}=(i_0,\ldots,i_s)$ is a sequence of elements of I_p such that $i_0\in M$ and $i_0>\cdots>i_s=i$ (s is a natural number). It is clear that the set B_p^i is nonempty for every $i\in I_p$.

Let $p=(I_p,n)< q=(I_q,m)$ be a pair of elements of P. Given $i\in I_p$ and $j\in I_q$, we define $C^{i,j}_{p,q}$ to be the set of pairs $(\underline{m},\underline{j})$ such that $\underline{m}=(m_1,\ldots,m_t)$ is a sequence of natural numbers not bigger than m and $\underline{j}=(j_0,\ldots,j_t)$ is a sequence of elements of I_q satisfying $i=j_0>\cdots>j_t=j$ (t is a natural number) and if i>j, then either $m_1>n$ or $j_1\notin I_p$.

Given pairs $(\underline{n}',\underline{i}') \in B_p^i$, where $\underline{n}' = (n_1,\ldots,n_s)$ and $\underline{i}' = (i_0,\ldots,i_s)$, and $(\underline{n}'',\underline{i}'') \in C_{p,q}^{i,j}$, where $\underline{n}'' = (n_{s+1},\ldots,n_t)$ and $\underline{i}'' = (i_s,\ldots,i_t)$, we define

$$h_{p,q}^{j}((\underline{n}'',\underline{i}''),(\underline{n}',\underline{i}'))=(\underline{n},\underline{i}),$$

where $\underline{n} = (n_1, \ldots, n_t)$ and $\underline{i} = (i_0, \ldots, i_t)$. It is readily seen that $(\underline{n}, \underline{i}) \in B_q^j$, and so we have defined a map $h_{p,q}^j$: $\bigcup_{i \in I_p} (C_{p,q}^{i,j} \times B_p^i) \to B_q^j$. On the other hand, let $(\underline{n}, \underline{i})$, where $\underline{n} = (n_1, \ldots, n_t)$ and $\underline{i} = (i_0, \ldots, i_t)$, be an element of B_q^j .

Denote by s the maximal number from the set $\{0,\ldots,t\}$ such that $i_s\in I_p$ and the pair $(\underline{n}',\underline{i}')$, where $\underline{n}'=(n_1,\ldots,n_s)$ and $\underline{i}'=(i_0,\ldots,i_s)$, belongs to $B_p^{i_s}$. If s=t, let \underline{n}'' be an empty sequence and $\underline{i}''=(i_t)$, while if s< t, define $\underline{n}''=(n_{s+1},\ldots,n_t)$ and $\underline{i}''=(i_s,\ldots,i_t)$. It follows from the choice of s that if s< t, then either $n_{s+1}>n$ or $i_{s+1}\notin I_p$. Hence $(\underline{n}'',\underline{i}'')\in C_{p,q}^{i,j}$ and the correspondence $(\underline{n},\underline{i})\mapsto ((\underline{n}'',\underline{i}''),(\underline{n}',\underline{i}'))$ defines a map $h'_{p,q}^j\colon B_q^j\to\bigcup_{i\in I_p}(C_{p,q}^{i,j}\times B_p^i)$. The map $h'_{p,q}^j$ is clearly one-to-one and the composition $h'_{p,q}^j\circ h_{p,q}^j$ equals the identity map on the set $\bigcup_{i\in I_p}(C_{p,q}^{i,j}\times B_p^i)$. It follows that the map $h_{p,q}^j$ is a bijection.

Let $p = (I_p, n) < q = (I_q, m) < r = (I_r, l)$ be elements of P, let $i \in I_p$, $j \in I_q$ and $k \in I_r$. For all $(\underline{m}', \underline{j}') \in C^{i,j}_{p,q}$, where $\underline{m}' = (m_1, \dots, m_s)$ and $\underline{j}' = (j_0, \dots, j_s)$, and $(\underline{m}'', \underline{j}'') \in C^{j,k}_{q,r}$, where $\underline{m}'' = (m_{s+1}, \dots, m_t)$, $\underline{j}'' = (j_s, \dots, j_t)$, define

$$g_{p,q,r}^{i,k}((\underline{m}'',\underline{j}''),(\underline{m}',\underline{j}'))=(\underline{m},\underline{j}),$$

where $\underline{m} = (m_1, \ldots, m_t)$ and $\underline{j} = (j_0, \ldots, j_t)$. Notice that $g_{p,q,r}^{i,k}$ is a map from $\bigcup_{j \in I_q} (C_{q,r}^{j,k} \times C_{p,q}^{i,j})$ to $C_{p,r}^{i,k}$. Let $i \in I_p$, $j \in I_q$ and $k \in I_r$ satisfy $i \geq j \geq k$. Then for every natural number $s \leq t \leq u$, and $(\underline{n},\underline{i}) \in B_p^i$, where $\underline{n} = (n_1, \ldots, n_s)$, $\underline{i} = (i_0, \ldots, i_s)$, $(\underline{m}',\underline{j}') \in C_{p,q}^{i,j}$, where $\underline{m}' = (m_{s+1}, \ldots, m_t)$, $\underline{j}' = (j_s, \ldots, j_t)$, and $(\underline{m}'',j'') \in C_{q,r}^{j,k}$, where $\underline{m}'' = (m_{t+1}, \ldots, m_u)$, $\underline{j}'' = (j_t, \ldots, j_u)$,

$$\begin{split} h^k_{p,r}(g^{i,k}_{p,q,r}((\underline{m}'',\underline{j}''),(\underline{m}',\underline{j}')),(\underline{n},\underline{i})) &= (\underline{m},\underline{j}) \\ &= h^k_{q,r}((\underline{m}'',\underline{j}''),h^j_{p,q}((\underline{m}',\underline{j}'),(\underline{n},\underline{i}))), \end{split}$$

where $\underline{m} = (n_1, \ldots, n_s, m_{s+1}, \ldots, m_u)$, and $\underline{j} = (i_0, \ldots, i_s, j_{s+1}, \ldots, j_n)$. (Note that $i_s = j = j_s$.) It follows that

$$\langle B_p, [C_{p,q}, h_{p,q}] \rangle_{p < q \text{ in } P}$$

forms a direct system in the category ${\bf c}$. For every $p\in P$ define a bijection $\varepsilon_p\colon I_p\to J(H(I_p))$ by $i\mapsto (i]_{I_p}$. It is clear that given $p=(I_n,n)< q=(I_q,m)$ in P, for every $i\in I_p$, $j\in I_q$, the inequality $i\geq j$ (i.e., $(i]_{I_q}\supseteq (j]_{I_q})$ holds iff $C^{j,i}_{p,q}\neq\emptyset$, whence the morphism $[C_{p,q},h_{p,q}]$ is $f_{p,q}$ -induced with respect to ε_p , ε_q . Proposition 2.10 concludes the proof.

4. Representation of distributive lattices

Let M be a finite set. Denote by TO(M) the set of all total orders on the set M. For all $\alpha \in TO(M)$, denote by $H(\alpha)$ the set of all hereditary subsets (including the empty set) of M with respect to the order α .

Let N be a subset of a finite set M and let $\alpha \in TO(M)$. Denote by $\alpha \upharpoonright N$ the restriction of α to the set N. For all α : $a_0 < \cdots < a_n$ and β : $b_0 < \cdots < b_n \in TO(M)$ define $\alpha \sim_N \beta$ if $a_i \neq b_i$ implies $a_i, b_i \in N$ for every $i \in \{0, \ldots, n\}$. It is clear that \sim_N is an equivalence relation on the set TO(M), and we denote by $[\alpha]_N$ the equivalence class of the linear order α .

LEMMA 4.1: Let N be a subset of a finite set M. For every $\alpha \in TO(N)$ and $\gamma \in TO(M)$, there exists a unique $\beta \in TO(M)$ satisfying $\beta \sim_N \gamma$ and $\beta \upharpoonright N = \alpha$.

Proof: For β , $\gamma \in N$, $\beta \sim_N \gamma$ iff there exists a permutation σ of M fixing every element of $M \setminus N$ such that $a <_{\beta} b$ iff $\sigma(a) <_{\gamma} \sigma(b)$, for all $a, b \in M$. The conclusion easily follows.

Let \mathcal{Q} be a subset of the set $\mathcal{P}(M)$. Denote by $C(\mathcal{Q})$ the set

$$\{\varphi \colon \mathcal{Q} \to \mathcal{P}(M) \mid \forall N \in \mathcal{Q} \colon \varphi(N) \subseteq N\}.$$

For every $\varphi \in C(\mathcal{Q})$, put

$$\cup \varphi = \bigcup \{ \varphi(N) \mid N \in \mathcal{Q} \}.$$

Definition: Let L be a finite distributive lattice. For all $a \in J(L)$, let B_L^a be the set of all pairs (α, φ) , where $\alpha \in TO([a]_L)$, $\varphi \in C(\mathcal{P}(L))$, and the following properties are satisfied:

- (i) $[a)_L \supseteq \cup \varphi$,
- (ii) for all a' > a in J(L), if $[a')_L \in H(\alpha)$, then $[a')_L \not\supseteq \cup \varphi$.

Denote by B_L the family $(B_L^a \mid a \in J(L))$; it is an object of **b** associated to the finite distributive lattice L.

Let L_1 be a (0,1)-sublattice of a finite distributive lattice L_2 . Let $a \in J(L_1)$ and $b \in J(L_2)$. If $b \not\leq a$, then we put $C_{L_1,L_2}^{a,b} = \emptyset$. Suppose that $b \leq a$, that is, $[b)_{L_2} \supseteq [a)_{L_1}$. Then we define $C_{L_1,L_2}^{a,b}$ to be the set of all pairs $([\beta']_{[a)_{L_1}}, \psi')$, where $\beta' \in TO([b)_{L_2})$, $\psi' \in C(\mathcal{P}(L_2) \setminus \mathcal{P}(L_1))$, and the following properties are satisfied:

- (iii) $[a)_{L_1} \in H(\beta' \upharpoonright ([b)_{L_2} \cap L_1)),$
- (iv) $[b)_{L_2} \supseteq \cup \psi'$,
- (v) for all $b' \in J(L_2)$ with $b < b' \le a$, if $[b')_{L_2} \in H(\beta')$, then $[b')_{L_2} \not\supseteq \cup \psi'$.

(Observe that if $\beta \sim_{[a)_{L_1}} \beta'$, then $[a)_{L_1} \in H(\beta' \upharpoonright ([b)_{L_2} \cap L_1))$ iff $[a)_{L_1} \in H(\beta \upharpoonright ([b)_{L_2} \cap L_1))$ and for every $b' \in J(L_2)$ with $b < b' \le a$, $[b')_{L_2} \in H(\beta)$ iff $[b')_{L_2} \in H(\beta')$; hence the definition is correct.) The following lemma is well-known [MMT, Exercises 2.63.10].

LEMMA 4.2: Let L_1 be a (0,1)-sublattice of a finite distributive lattice L_2 . Then for every $b \in J(L_2)$, $[b]_{L_2} \cap L_1 = [c]_{L_1}$ for some $c \in J(L_1)$.

LEMMA 4.3: Let L_1 be a (0,1)-sublattice of a finite distributive lattice L_2 . Let $b \in J(L_2)$. The rule

$$(([\beta']_{[a)_{L_1}}, \psi'), (\alpha, \varphi)) \mapsto (\beta, \psi),$$

where $\psi = \psi' \cup \varphi$ and $\beta \in TO([b]_{L_2})$ satisfies $\beta \sim_{[a]_{L_1}} \beta'$ and $\beta \upharpoonright [a]_{L_1} = \alpha$, defines a map

$$h^b_{L_1,L_2}\colon \bigcup_{a\in J(L_1)} (C^{a,b}_{L_1,L_2}\times B^a_{L_1})\to B^b_{L_2}.$$

Proof: Let $a \in J(L_1)$. If $b \not\leq a$, then the set $C_{L_1,L_2}^{a,b}$ is empty. Suppose that $b \leq a$. Let $(\alpha,\varphi) \in B_{L_1}^a$, and $([\beta']_{[a)_{L_1}},\psi') \in C_{L_1,L_2}^b$. Let (β,ψ) be the pair defined by the correspondence (4.2). According to Lemma 4.1 such a pair exists and is uniquely determined. We prove that $(\beta,\psi) \in B_{L_2}^b$. It suffices to verify that

- (i) $[b)_{L_2} \supseteq \cup \psi$,
- (ii) for all b' > b in $J(L_2)$, if $[b')_{L_2} \in H(\beta)$, then $[b')_{L_2} \not\supseteq \cup \psi$.

Ad (i): By the definition $[b)_{L_2} \supseteq \cup \psi'$. Since we have supposed that $b \leq a$, $[b)_{L_2} \supseteq [a)_{L_1} \supseteq \cup \varphi$. It follows that $[b)_{L_2} \supseteq (\cup \psi') \cup (\cup \varphi) = \cup \psi$.

Ad (ii): Let $[b')_{L_2} \in H(\beta)$ for some $b \leq b' \in J(L_2)$. If $b' \not\supseteq \cup \psi'$ we are done. Assume otherwise. Then, by property (v) of $C_{L_1,L_2}^{a,b}$, $b' \not\leq a$, that is, $[b')_{L_2} \cap L_1 \not\supseteq [a)_{L_1}$. By Lemma 4.2, $[b')_{L_2} \cap L_1 = [a')_{L_1}$ for some $a' \in J(L_1)$. Since $[b')_{L_2} \in H(\beta)$, we have that $[a')_{L_1} \in H(\beta \upharpoonright ([b)_{L_2} \cap L_1)))$. By property (iii) of $C_{L_1,L_2}^{a,b}$, also $[a)_{L_1} \upharpoonright H(\beta \in ([b)_{L_2} \cap L_1)))$, and so either $[a')_{L_1} \supseteq [a)_{L_1}$ or $[a)_{L_1} \supseteq [a')_{L_1}$. According to the assumption that $b' \not\leq a$, only the latter case is possible, and so a < a' and $[a')_{L_1} \in H(\alpha)$. By property (ii) of $B_{L_1}^a$, we have that $[a')_{L_1} \not\supseteq \cup \varphi$, whence $[b')_{L_2} \not\supseteq \cup \psi$.

LEMMA 4.4: Let L_1 be a (0,1)-sublattice of a finite distributive lattice L_2 . Let $b \in J(L_2)$. The map h_{L_1,L_2}^b defined by (4.2) is a bijection.

Proof: First we prove that the map $h^b_{L_1,L_2}$ is onto. Let $(\beta,\psi) \in B^b_{L_2}$. Denote by φ the restriction $\psi \upharpoonright \mathcal{P}(L_1)$. By Lemma 4.2, $[b)_{L_2} \cap L_1 = [c)_{L_1}$ for some $c \in J(L_1)$. Since, by property (i) of $B^b_{L_2}$, $[b)_{L_2} \supseteq \cup \psi$, we have that $[c)_{L_1} \supseteq \cup \varphi$. The set of all $a' \in J(L_1)$ for which $[a')_{L_1} \in H(\beta \upharpoonright ([b)_{L_2} \cap L_1))$ and $[a')_{L_1} \supseteq \cup \varphi$ is nonempty (it contains at least c) and totally ordered with respect to β . Let

22 P. RŮŽIČKA Isr. J. Math.

a be the greatest element of this set. Put $\alpha = \beta \upharpoonright [a]_{L_1}$. It is straightforward that $(\alpha, \varphi) \in B^a_{L_1}$.

Denote by ψ' the restriction $\psi \upharpoonright (\mathcal{P}(L_2) \smallsetminus \mathcal{P}(L_1))$. Trivially $[b)_{L_2} \supseteq \cup \psi'$, and we have chosen $a \in L_1$ so that $[a)_{L_1} \in H(\beta \upharpoonright ([b)_{L_2} \cap L_1))$. In order to prove that $([\beta]_{[a)_{L_2}}, \psi') \in C^{a,b}_{L_1,L_2}$, it suffices to verify that $[b')_{L_2} \not\supseteq \cup \psi'$ for every $b' \in J(L_2)$ such that $b < b' \leq a$ and $[b')_{L_2} \in H(\beta)$. Let $b' \in J(L_2)$ be any such element. Then $[b')_{L_2} \not\supseteq \cup \psi$ by property (iii) of $B^b_{L_2}$, and since $b' \leq a$ and $[a)_{L_1} \supseteq \cup \varphi$, we have that $[b')_{L_2} \supseteq [a)_{L_1} \supseteq \cup \varphi$, whence $[b')_{L_2} \not\supseteq \cup \psi'$.

By the definition,

$$h_{L_1,L_2}^b(([\beta]_{[a)_{L_1}},\psi'),(\alpha,\varphi))=(\beta,\psi).$$

It remains to verify that the map h_{L_1,L_2}^b is one-to-one. Let

$$h_{L_1,L_2}^b(([\beta']_{[a]_{L_1}},\psi'),(\alpha,\varphi))=(\beta,\psi)$$

for some $a \in J(L_1)$, $([\beta']_{[a)_{L_2}}, \psi') \in C_{L_1, L_2}^{a,b}$, and $(\alpha, \varphi) \in B_{L_1}^a$. According to property (iii) of $C_{L_1, L_2}^{a,b}$, $[a]_{L_1} \in H(\beta' \upharpoonright ([b]_{L_2} \cap L_1))$ which is equivalent to $[a]_{L_1} \in H(\beta \upharpoonright ([b]_{L_2} \cap L_1))$. By property (ii) of $B_{L_1}^a$, $[a')_{L_1} \not\supseteq \cup \varphi$ for every $a < a' \in J(L_1)$ such that $[a')_{L_1} \in H(\alpha)$. Since $\alpha = \beta \upharpoonright [a]_{L_1}$, a is the greatest element, with respect to the total order β , of the set of all $a' \in J(L_1)$ which satisfy $[a')_{L_1} \in H(\beta \upharpoonright ([b]_{L_2} \cap L_1))$ and $[a')_{L_1} \supseteq \cup \varphi$. It follows that a is uniquely determined by the pair (β, ψ) . Since $\varphi = \psi \upharpoonright \mathcal{P}(L_1)$, $\alpha = \beta \upharpoonright [a]_{L_1}$, $\psi' = \psi \upharpoonright (\mathcal{P}(L_2) \smallsetminus \mathcal{P}(L_1))$, and $[\beta']_{[a]_{L_1}} = [\beta]_{[a]_{L_1}}$, the map h_{L_1, L_2}^b is one-to-one.

LEMMA 4.5: Let L_1 be a (0,1)-sublattice of a finite distributive lattice L_2 , let L_2 be a (0,1)-sublattice of a finite distributive lattice L_3 . Then

$$[C_{L_1,L_3},h_{L_1,L_3}] = [C_{L_2,L_3},h_{L_2,L_3}] \circ [C_{L_1,L_2},h_{L_1,L_2}].$$

Proof: Let $a \in J(L_1)$ and $c \in J(L_3)$. We set

$$\widetilde{C}_{L_1,L_2,L_3}^{a,c} = \bigcup_{b \in J(L_2)} (C_{L_2,L_3}^{b,c} \times C_{L_1,L_2}^{a,b}),$$

and we define a map $\widetilde{h}^c_{L_1,L_2,L_3}$: $\bigcup_{a\in J(L_1)} (\widetilde{C}^{a,c}_{L_1,L_2,L_3}\times B^a_{L_1})\to B^c_{L_3}$ by the rule

$$\begin{split} &\widetilde{h}^{c}_{L_{1},L_{2},L_{3}}((([\gamma']_{[b)_{L_{2}}},\chi'),([\beta']_{[a)_{L_{1}}},\psi')),(\alpha,\varphi)) = \\ &h^{c}_{L_{2},L_{3}}(([\gamma']_{[b)_{L_{2}}},\chi'),h^{b}_{L_{1},L_{2}}(([\beta']_{[a)_{L_{1}}},\psi'),(\alpha,\varphi))) \end{split}$$

for every $(\alpha, \varphi) \in B_{L_1}^a$, $([\beta']_{[a)_{L_1}}, \psi') \in C_{L_1, L_2}^{a,b}$, and $([\gamma']_{[b)_{L_2}}, \chi') \in C_{L_2, L_3}^{b,c}$. By the definition of the composition of morphisms in the category \mathbf{c} ,

$$[\widetilde{C}_{L_1,L_2,L_3},\widetilde{h}_{L_1,L_2,L_3}] = [C_{L_2,L_3},h_{L_2,L_3}] \circ [C_{L_1,L_2},h_{L_1,L_2}].$$

For every $a \in J(L_1)$ and $c \in J(L_3)$, define a map $g_{L_1,L_2,L_3}^{a,c} : \widetilde{C}_{L_1,L_2,L_3}^{a,c} \to C_{L_1,L_3}^{a,c}$ by the rule

$$(([\gamma']_{[b)_{L_2}}, \chi'), ([\beta']_{[a)_{L_1}}, \psi')) \mapsto ([\gamma'']_{[a)_{L_1}}, \chi''),$$

where $\chi'' = \chi' \cup \psi'$ and γ'' satisfies both $\gamma'' \sim_{[b]_{L_2}} \gamma'$ and $(\gamma'' \upharpoonright [b]_{L_2}) \sim_{[a]_{L_1}} \beta'$. By an argument similar to the one of the proof of Lemma 4.1, we easily see that such a $\gamma'' \in TO([c]_{L_3})$ exists and that its properties uniquely determine the equivalence class $[\gamma'']_{[a]_{L_1}}$.

Let
$$(\alpha, \varphi) \in B_{L_1}^a$$
, $([\beta']_{[a)_{L_1}}, \psi') \in C_{L_1, L_2}^{a,b}$, and $([\gamma']_{[b)_{L_2}}, \chi') \in C_{L_2, L_3}^{b,c}$. Let $([\gamma'']_{[a)_{L_1}}, \chi'') = g_{L_1, L_2, L_3}^{a,c}(([\gamma']_{[b)_{L_2}}, \chi'), ([\beta']_{[a)_{L_1}}, \psi'))$.

Then, on the one hand,

$$\begin{split} &\widetilde{h}^{c}_{L_{1},L_{2},L_{3}}((([\gamma']_{[b)_{L_{2}}},\chi'),([\beta']_{[a)_{L_{1}}},\psi')),(\alpha,\varphi))\\ &=h^{c}_{L_{2},L_{3}}(([\gamma']_{[b)_{L_{2}}},\chi'),h^{b}_{L_{1},L_{2}}(([\beta']_{[a)_{L_{1}}},\psi')),(\alpha,\varphi))\\ &=h^{c}_{L_{2},L_{3}}(([\gamma']_{[b]_{L_{2}}},\chi'),(\beta,\psi)), \end{split}$$

where $\psi = \psi' \cup \varphi$, $\beta \sim_{[a]_{L_1}} \beta'$, and $\beta \upharpoonright [a]_{L_1} = \alpha$. Consequently,

$$h_{L_2,L_3}^c(([\gamma']_{[b)_{L_2}},\chi'),(\beta,\psi))=(\gamma,\chi),$$

where $\chi = \chi' \cup \psi$, $\gamma \sim_{[b]_{L_2}} \gamma'$, and $\gamma \upharpoonright [b]_{L_2} = \beta$, which implies both $(\gamma \upharpoonright [b]_{L_2}) \sim_{[a]_{L_1}} \beta'$ and $\gamma \upharpoonright [a]_{L_1} = \alpha$.

On the other hand,

$$h_{L_1,L_3}^c(([\gamma'']_{[a)_L},\chi''),(\alpha,\varphi))=(\tilde{\gamma},\tilde{\chi}),$$

where $\widetilde{\chi} = \chi'' \cup \varphi = \chi' \cup \psi' \cup \varphi$, $\widetilde{\gamma} \sim_{[a]_{L_1}} \gamma''$, and $\widetilde{\gamma} \upharpoonright [a]_{L_1} = \alpha$. It follows that $\widetilde{\gamma} \sim_{[b]_{L_2}} \gamma'$ and since, by the definition, $(\gamma'' \upharpoonright [b]_{L_2}) \sim_{[a]_{L_1}} \beta'$, we have that also $(\widetilde{\gamma} \upharpoonright [b]_{L_2}) \sim_{[a]_{L_1}} \beta'$. Thus $\widetilde{\gamma} = \gamma$ and $\widetilde{\chi} = \chi$.

LEMMA 4.6: Let L_1 be a proper (0,1)-sublattice of a finite distributive lattice L_2 . Then $C_{L_1,L_2}^{a,b} \neq \emptyset$ iff $b \leq a$, for every $a \in J(L_1)$ and $b \in J(L_2)$.

Proof: (\Rightarrow) It follows directly from the definition. (\Leftarrow) Suppose that $a \geq b$. Let β' be any total order on the set $[b)_{L_2}$ such that $[a)_{L_1} \in H(\beta' \upharpoonright ([b)_{L_2} \cap L_1))$.

24 P. RŮŽIČKA Isr. J. Math.

Define $\psi'(L_2) = [b)_{L_2}$ (it is exactly here that we use the assumption $L_1 \neq L_2$), while $\psi'(K) = \emptyset$ for every $K \subsetneq L_2$ from $\mathcal{P}(L_2) \smallsetminus \mathcal{P}(L_1)$. It is straightforward that $([\beta']_{[a)_{L_1}}, \psi') \in C^{a,b}_{L_1,L_2}$.

THEOREM 4.7: Every distributive (0,1)-lattice is isomorphic to the semilattice of finitely generated ideals of some locally matricial algebra.

Proof: Let \mathcal{L} be a distributive (0,1)-lattice. Denote by P the poset of all (0,1)-sublattices of \mathcal{L} ordered by inclusion. For all $L_1 \subseteq L_2$ in P denote by i_{L_1,L_2} the inclusion map. If the lattice \mathcal{L} is finite, the assertion follows from Theorem 3.1. Suppose that \mathcal{L} is infinite. Then P has no maximal elements and

$$\mathcal{L} \simeq \varinjlim \langle L_1, i_{L_1, L_2} \rangle_{L_1 \subseteq L_2 \text{ in } P}.$$

It follows from Lemma 4.5 that

$$\langle B_{L_1}, [C_{L_1,L_2}, h_{L_1,L_2}] \rangle_{L_1 \subseteq L_2 \text{ in } P}$$

is a direct system in the category c. Let $L_1 \subsetneq L_2$ in P. By Lemma 4.6, $C_{L_1,L_2}^{a,b} \neq \emptyset$ iff $b \leq a$, for every $a \in J(L_1)$, and $b \in J(L_2)$. It follows that the morphism $[C_{L_1,L_2},h_{L_1,L_2}]$ is i_{L_1,L_2} -induced with respect to identity maps. Finally, we apply Proposition 2.10.

We have proved (Theorem 3.1, Theorem 3.2, Theorem 4.5) that every distributive $(\vee, 0, 1)$ -semilattice which is either

- (a) countable or
- (b) strongly distributive or
- (c) a lattice

can be represented as the semilattice of all finitely generated ideals of some unital locally matricial algebra. It is easy to observe how these results imply that every distributive $(\vee,0)$ -semilattice which is either countable or strongly distributive or a lattice is isomorphic to the semilattice of finitely generated ideals of a locally matricial algebra, now not necessarily with a unit element. Indeed, for a semilattice S, we denote by \hat{S} the semilattice obtained by adding to S a new element 1 such that 1 > s for every $s \in S$. If S is a distributive $(\vee,0)$ -semilattice satisfying (a), (b) or (c), then \hat{S} is a $(\vee,0,1)$ -semilattice satisfying (a), (b) or (c), respectively. Then there exists a locally matricial algebra R with $\mathrm{Id}^{c}(R) \simeq \hat{S}$. The algebra R has a unique maximal two-sided ideal I which itself is a (non-unital) locally matricial algebra and the semilattice of its finitely generated two-sided ideals is isomorphic to S.

5. The Γ -invariant problem

In this section we show how to solve the Γ -invariant problem applying the main results of Section 4. The idea of the use of the Γ -invariants to classify uniform modules over associative rings is due to J. Trlifaj [T1, T2] and P. C. Eklof [ET]. We outlined the idea in the Introduction; now we are going to study it in detail.

Definition: Let L be a (0,1)-lattice.

- (i) Let σ be a nonzero ordinal number. A sequence $\mathcal{A} = (a_{\alpha} \mid \alpha < \sigma)$ of nonzero elements of L is called a **cofinal strictly decreasing chain** (or c.d.c.) if
 - (1) $a_{\alpha+1} < a_{\alpha}$ for all $\alpha < \sigma$,
 - (2) $a_{\beta} = \bigwedge_{\alpha < \beta} a_{\alpha}$ for all limit ordinals $\beta < \sigma$,
 - (3) if $0 \neq a \in L$, then there is $\alpha < \sigma$ such that $a_{\alpha} \leq a$.
- (ii) The lattice L is called **strongly dense** provided L possesses a c.d.c. The **dimension** of a strongly dense lattice L is the minimal length of a c.d.c. in L.

Definition: Let L be a (0,1)-lattice. Let a < b < 1 be elements of L. Then b is **complemented over** a if there is $c \in L$ such that $b \wedge c = a$ and $b \vee c = 1$.

Definition: Let L be a strongly dense modular lattice of uncountable dimension κ . Let $\mathcal{A} = (a_{\alpha} \mid \alpha < \kappa)$ be a c.d.c. in L. Put

$$E(A) = \{ \alpha < \kappa \mid \exists_{\beta > \alpha} : a_{\alpha} \text{ is not complemented over } a_{\beta} \}.$$

Denote by $B(\kappa)$ the Boolean algebra of all subsets of κ modulo the filter generated by closed unbounded sets. Given a subset E of κ , we denote by \overline{E} the element of $B(\kappa)$ represented by E. The equivalence class $\overline{E(A)}$ does not depend on a particular choice of a c.d.c. of the minimal length κ [ET, Lemma 1.8]. It is called the Γ -invariant, $\Gamma(L)$, of the strongly dense lattice L.

Let κ be a regular uncountable cardinal and let E be a subset of $\kappa \setminus \{\emptyset\}$. Let L_E be the lattice defined in [ET, Definition 1.12], that is, the (0,1)-sublattice of the lattice of all subsets of κ ordered by inverse inclusion generated by intervals $[\alpha, \beta)$, where $\alpha < \beta < \kappa$ and $\alpha \notin E$. By [ET, Theorem 1.13], L_E is a strongly dense distributive lattice of cardinality and dimension κ such that $\Gamma(L_E) = \overline{E}$. Denote by I_E the ideal lattice of L_E . By [ET, Theorem 1.15], I_E is a strongly dense algebraic distributive lattice of dimension κ whose greatest element is compact and $\Gamma(I_E) = \overline{E}$.

Let L be a modular lattice. Then

 $\{a \in L \mid b \text{ is not complemented over } a\}$

is a lower subset of L for every nonzero element $b \in L$ [ET, Lemma 1.4]. A nonzero element b of the lattice L is called **weakly complemented** if b is complemented over a for every a with 0 < a < b.

Definition: Let L be a strongly dense lattice of dimension $\kappa > 1$.

- (i) L is **complementing** provided L possesses a c.d.c. $\mathcal{A} = (a_{\alpha} \mid \alpha < \kappa)$ such that for all $\alpha < \beta < \kappa$, a_{α} is complemented over a_{β} .
- (ii) L is **narrow** provided that it is not complementing and L possesses a c.d.c. $\mathcal{A} = (a_{\alpha} \mid \alpha < \kappa)$ such that for all $\alpha < \beta < \kappa$, a_{α} is not complemented over a_{β} .
- (iii) L is **constricted** provided that it does not have a c.d.c. $\mathcal{A} = (a_{\alpha} \mid \alpha < \kappa)$ such that for all $\alpha < \kappa$, $a_{\alpha+1}$ is weakly complemented.

By [ET, Theorem 1.10], a strongly dense modular lattice L of dimension κ is complementing if and only if $\Gamma(L) = \overline{\emptyset}$ and it is narrow if and only if $\Gamma(L) = \overline{\kappa}$. Due to [ET, Corollary 1.11], the lattice L is constricted if and only if there exists a > 0 in L such that a' is not weakly complemented for every a' with 0 < a' < a. It follows that L is narrow provided L is constricted. On the other hand, given an uncountable regular cardinal κ , the lattice L_{E_2} where $E_2 = \{\alpha < \kappa \mid \alpha \text{ is a limit ordinal }\}$ is a narrow but not constricted distributive lattice of dimension κ [ET, Corollary 1.14].

An R-module M is called **strongly uniform** provided the lattice L(M) of its submodules is strongly dense. The dimension and the Γ -invariant of a strongly uniform module M correspond to the dimension and the Γ -invariant of the lattice L(M). A strongly uniform module M is **complementing**, **narrow**, or **constricted** if the lattice L(M) is complementing, narrow, or constricted. The following problems are stated in [ET]:

[ET, PROBLEM 2.3]: For an uncountable regular cardinal κ , which elements of $\mathcal{B}(\kappa)$, other than $\overline{\kappa}$, are the Γ -invariant of a strongly uniform module over a regular ring?

[ET, Problem 2.4]: Is there a strongly uniform module of dimension κ which is narrow but not constricted?

Both the problems are solved combining Theorem 4.5 and [ET, Lemma 2.1]:

[ET, Lemma 2.1]: Let L be an algebraic lattice and k be a field. Assume that $L \simeq \operatorname{Id}(S)$ for a k-algebra S. Then $L \simeq L(M)$ for some right R-module M, where $R = S \otimes_k S^{op}$. Moreover, if S is a locally matricial k-algebra, then so is R.

THEOREM 5.1: Let κ be an uncountable regular cardinal, let E be a subset of $\kappa \setminus \{0\}$. Then there exists a locally matricial algebra R and a right R-module M with $L(M) \simeq I_E$.

In particular, all elements of $\mathcal{B}(\kappa)$ are realized as the Γ -invariant of a strongly uniform module over a unit-regular ring.

Proof: Since $I_E^c \simeq L_E$, compact elements of I_E form a distributive lattice. By Theorem 4.5, there exists a locally matricial algebra S with $\operatorname{Id}^c(S) \simeq L_E$, whence $\operatorname{Id}(S) \simeq I_E$. Now, by [ET, Lemma 2.1], $L(M) \simeq I_E$ for a right $R = S \otimes S^{op}$ -module M, and R is a locally matricial algebra.

THEOREM 5.2: For every uncountable regular cardinal κ there exists a strongly uniform module of dimension κ , over a locally matricial algebra, which is narrow but not constricted.

Proof: Let

$$E_2 = \left\{ \alpha < \kappa \mid \alpha \text{ is a limit ordinal} \right\}.$$

Then the algebraic lattice I_{E_2} is narrow but not constricted. By Theorem 5.1, there are a locally matricial algebra R and a right R-module M with $L(M) \simeq I_{E_2}$.

ACKNOWLEDGEMENT: The author wishes to thank Jan Trlifaj, Jiří Tůma, and the anonymous referee. He is especially grateful to Friedrich Wehrung for many comments and suggestions which considerably improved the paper.

References

- [Be] G. M. Bergman, Von Neumann regular rings with tailor-made ideal lattices, unpublished notes (1986).
- [ET] P. C. Eklof and J. Trlifaj, Γ-invariants for dense lattices, Algebra Universalis **40** (1998), 427-445.
- [Go] K. R. Goodearl, Von Neumann Regular Rings, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991, pp. xviii+412.

- [Gr] G. Grätzer, General Lattice Theory, 2nd edition, Birkhäuser-Verlag, Basel, 1998.
- [GW] K. R. Goodearl and F. Wehrung, Representations of distributive lattices in ideal lattices of various algebraic structures, Algebra Universalis 45 (2001), 71–102.
- [MMT] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties. Volume I, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, California: Wadsworth & Brooks/Cole Advanced Books & Software, 1987, pp. xii + 361.
- [Pu] P. Pudlák, On congruence lattices of lattices, Algebra Universalis 20 (1985), 96–114.
- [ST] S. Shelah and J. Trlifaj, Spectra of the Γ -invariants of uniform modules, Journal of Pure and Applied Algebra 162 (2001), 367–379.
- [T1] J. Trlifaj, Modules over non-perfect rings, in Advances in Algebra and Model Theory, Gordon and Breach, Philadelphia, 1996, pp. 471–492.
- [T2] J. Trlifaj, Uniform modules, Γ-invariants, and Ziegler spectra for regular rings, Proc. ICAGM'98, Birkhäuser Verlag, Basel, 1999, pp. 327–340.
- [W1] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel Journal of Mathematics 103 (1998), 177-203.
- [W2] F. Wehrung, A uniform refinement property of certain congruence lattices, Proceedings of the American Mathematical Society 127 (1999), 363-370.
- [W3] F. Wehrung, Representation of algebraic distributive lattices with ℵ₁ compact elements as ideal lattices of regular rings, Publicacions Matemàtiques (Barcelona) 44 (2000), 419–435.
- [W4] F. Wehrung, Semilattices of finitely generated ideals of exchange rings with finite stable rank, Transactions of the American Mathematical Society 356 (2004), 1957-1970.