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ABSTRACT 

We develop a method of representation of distributive (V,0, 1)-semi- 

lattices as semilattices of finitely generated ideals of locally matricia] 

algebras. We use the method to reprove two representation results by 

G. M. Bergman and prove a new one that every distributive (0, l)-lattice 

is, as a semilattice, isomorphic to the semilattice of all finitely gener- 

ated ideals of a locally matricial algebra. We apply this fact to solve 

the F-invariant problem. 

Introduction 

A lattice is strongly dense provided it possesses a cofinal continuous strictly 

decreasing chain (abbreviated to c.d.c.) in the poset of its nonzero elements. 

The dimension of a strongly dense lattice is the length of its shortest c.d.c. If 

a modular strongly dense lattice L has dimension R0 then L possesses either 

a c.d.c. (am I n < w) such that  an is complemented over am for every n < m 

(we say that  L is complementing) or a c.d.c. (am I n < w) such that  an is 

not complemented over am for every n < m (then we say that  the lattice L 

is narrow). For strongly dense lattices of uncountable dimension ~ is defined 

an invariant, called the F-invariant, which is an element of B(~), the Boolean 

* Research supported by grant GAUK 12/97. 
Received November 1, 2001 and in revised form October 24, 2003 



2 P. RUZICKA Isr. J. Math. 

algebra of all subsets of a modulo the filter generated by closed unbounded 

subsets. This invariant in some sense measures the failure of the lattice to be 

relatively complemented lET]. 

Let E denote the element of B(n) represented by a subset E of an uncountable 

regular cardinal ~;. By lET, Theorem 1.3], there exists a distributive strongly 

dense lattice of dimension (and cardinality) n whose F-invariant is E. Fur- 

thermore, the lattice IE of all nonzero ideals of LE is an algebraic distributive 

strongly dense lattice of dimension n with the F-invariant E. 

A right module over an associative ring is strongly uniform provided its sub- 

module lattice is strongly dense. The dimension and the F-invariant of a strongly 

uniform module are defined as the dimension and the F-invaxiant of its sub- 

module lattice. J. Trlifaj IT1] studied possible values of the dimensions and 

the F-invariants of strongly uniform modules over rings of various types. In 

particular, he proved that every strongly uniform module over a commutative 

Noetherian ring is of finite or countable dimension and that in the latter case it is 

narrow IT1, Theorem 2.8]. Over commutative rings IT1, Theorem 2.10] or (non- 

commutative) Noetherian rings IT1, Example 2.11] there are strongly uniform 

modules of any uncountable dimension n, but their only possible F-invariant is 

~. Finally, for every regular cardinal number n, he found an example of a mod- 

ule of dimension n over a unit-regular ring. The F-invariants of these modules 
were again ~ and he asked about all the possible values of the F-invariants of 

strongly uniform modules over non-right perfect rings, in particular, over rings 

which are von Neumann regular IT1, Open problem 3]. This question will be 

referred to as the F-invariant problem. 

Later on, P. C. Eklof and J. Trlifaj constructed a strongly dense module 

of a countable dimension which is complementing and more complex examples 

of strongly uniform modules of an uncountable dimension over a locally semisim- 

ple algebra (which is a unit-regular ring) [ET, Theorem 2.7] but the F-invariant 

problem remained open lET, Problem 2.3]. 

The F-invariant problem was our original motivation. We have tried to apply 

the following idea [ET]: A ring R is a right module over the ring R | R ~ (with 

the multiplication given by t(r | s) = str) and submodules of this module cor- 

respond to two-sided ideals of the ring R. In general, regularity is not preserved 

by this tensor product construction but if R is a locally matricial algebra, then 

the ring R | R ~ is a locally matricial algebra as well. Thus we focused on 

representations of algebraic lattices as the lattices of two-sided ideals of locally 

matricial algebras. 
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It is well known that the lattice of two-sided ideals of avon Neumann regular 

ring is distributive. G. M. Bergman [Be] proved that every algebraic distributive 

lattice either isomorphic to the lattice of lower subsets of a partially ordered set 

or with at most countably many compact elements is isomorphic to the two-sided 

ideal lattice of a locally matricial algebra. In contrast, F. Wehrung [Wl, W2] 

constructed an algebraic distributive lattice with ~2 compact elements which 

cannot be realized as the lattice of two-sided ideals of any von Neumann regular 

ring. Further, he proved that if an algebraic distributive lattice has ~1 compact 

elements, then it can be realized as the lattice of two-sided ideals of a von 

Neumann regular rings [W3]; however, he proved recently that the result fails 

for locally matricial algebras [W4]. 

The main result of the paper is the realization of every algebraic distributive 

lattice whose compact elements form a lattice as the lattice of two-sided ideals 

of a locally matricial algebra [GW, Problem 1]. In particular, the lattice IE 

has such a realization for every subset E of a regular cardinal ~, which leads 

to the solution of the F-invariant problem. 

At the same time as we achieved this result, S. Shelah and J. Trlifaj [ST] 

constructed, for every regular cardinal ~ and every subset E of ~, a vector 

space V over a given field k and a k-subalgebra R of the endomorphism ring 

of V such that V, as an R-module, is strongly uniform of dimension ~ and 

its F-invariant equals E. However, the ring R is not von Neumann regular. 

Now, let us outline the organization of the paper. In the first two sections we 

develop tools for realization of distributive (V, 0, 1)-semilattices as semilattices 

of finitely generated ideals of unital locally matricial algebras. In Section 3 we 

use these tools to reprove Bergman's results. Section 4 is devoted to the proof 

of the main result and Section 5 to its application to the solution of the F- 

invariant problem. 

N o t a t i o n  

The set of all natural numbers is denoted by w. This notation is used also for 

the first infinite ordinal. Given a set M, we denote by P(M) the set of all 

subsets of M, and by [M] <~ the set of all finite subsets of the set M. For a map 

~: M --+ N, we define a map 7)(~): P(N) --+ P(M) by the correspondence 

N' ~ ~-l(Nr),  where N' is a subset of N. 

Let a be an element of a partially ordered set P. We use the notation 

[a)p={b�9 (a]p={b �9  
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for the lower, upper subset of P generated by the element a, respectively. We 

drop the subscript if the set P is understood. 

Let C be a category. We denote by C(a, b) the set of all morphisms with 

domain a and codomain b. By la,  we denote the identity morphism of an object 

a E C. For all categories except the category c defined in Section 2, identity 

morphisms correspond to identity maps. 

Let k be a field. Recall that a family (Vi I i E I) of subspaces of a k-vector 

space V is independent if for every i E I, the intersection of V~ with the subspace 

of V spanned by (Vj ] j  E I \ {i}) is the zero subspace. Given an independent 

family (Vi I i E I) of subspaces of a k-vector space V, we denote by ~ iE i  Vi 

the subspace of V spanned by all the V~, i E I. Moreover, given a family 

(f~: Vi --+ W I i E I) of k-linear maps, we denote by ~ e l  fi the unique k-linear 

map f from ~ i e i  Vi to W such that f I Vi = fi for every i E I. 

1. D i s t r i b u t i v e  semi l a t t i ce s  

Lattices of substructures, congruences, ideals, etc. of algebraic structures are 

algebraic lattices [Gr, II.3. Definition 12]: 

(i) Let L be a complete lattice and let a be an element of L. Then a is called 

c o m p a c t ,  if a < V X ,  for some X c_ L, implies that a < X1, for some 

finite X1 C_ X. 

(ii) A complete lattice is called a lgebra ic ,  if every element is the join of 

compact elements. 

The set of compact elements of a complete lattice L is closed under finite joins 

(not under finite meets in general) and contains the zero of L. Thus it forms a 

(V, 0)-semilattice, which we denote by L c. 

The ideal lattice of every (V, 0)-semilattice is algebraic. On the other hand, 

every algebraic lattice L is isomorphic to Id(LC), the lattice of all nonempty 

ideals of the (V, 0)-semilattice L c [Gr, II.3. Theorem 13]. 

A semilattice S is called d i s t r i b u t i v e  if a < b0 V bl (a, b0, bl E S) implies the 

existence of a0, al E S with a0 < b0, al _< bl and a = a0 Y al [Gr, page 131]. 

A (V, 0)-semilattice S is distributive iff Id(S) (as a lattice) is distributive [Gr, 

II.5. Lemma 1, (iii)]. 

A nonzero element a of a distributive semilattice (resp. lattice) L is jo in-  

i r r educ ib le ,  if a = b Y c implies that either a = b or a = c for every b, c E L. 

We denote by J(L) the set of all join-irreducible elements of L, regarded as a 

partially ordered set under the partial ordering of L [Gr, page 81]. A subset H 

of a partially ordered set P is h e r e d i t a r y ,  if for every b E H and every a E P,  
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a _< b implies that a E H. We denote by H(P) the set of all hereditary subsets 

of P. Observe that H(P) with intersection and union as meet and join forms 

a distributive lattice. Every finite distributive semilattice (resp. lattice) L is 

isomorphic to the semilattice (resp. lattice) H(J(L)) of all hereditary subsets of 

J(L) partially ordered by set inclusion [Gr, II.1. Theorem 9]. 

A finite distributive (V, 0, 1)-semilattice s is Boolean,  if the order on the set 

J(s) is trivial, that is, if s is isomorphic to the semilattice of all subsets of a 

finite set. 

We denote by 

�9 s - -  the category of all finite distributive (V,0, 1)-semilattices (with 

(V, 0, 1)-preserving homomorphisms), 

�9 b - -  the category of all finite Boolean semilattices (with (V,0, 1)- 

preserving homomorphisms). 

Given a finite distributive (V,0, 1)-semilattice s, we denote by Bo(s) the 

Boolean semilattice of all subsets of the set J(s) and, for each f E S(Sl,S2), 

we define a homomorphism Bo(f) E b(Bo(Sl), Bo(s2)) by the rule 

B o ( f ) ( X ) =  {j E J(s2) ]j < f ( V X ) }  ( X E B o ( s ) ) .  

Observe that Bo preserves the composition of morphisms but not the identity 

morphisms; indeed, Bo(ls) = 1Bo(s) iff s is Boolean. 

Let s be a finite distributive (V, 0, 1)-semilattice. We define a pair of semilat- 

tice homomorphisms Ks: s ~ Bo(s) and L~: Bo(s) --+ s by 

and 

Ks(x) = {j e J(s) ] j <_ x} (x E s) 

L , ( x )  = V x (X E Bo(s)). 

Observe that 

(1.1) Ls o Ks = ls 

and that for every homomorphism f E S(Sl, s2) the equalities 

(1.2) Bo(f)  o Ksl = Ks~ o f, 

(1.3) 

and 

(1.4) 

f o Lsl = Ls2 o Bo(f)  

Ks2 o f o Ls~ = Do(f) 

hold. 
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PROPOSITION 1.1: Let P be an upwards  directed part ial ly  ordered set wi thou t  

m a x i m a l  e lements  and let 

( S p ,  fp ,q)p<_q i n  P 

be a direct s y s t em in s. I f  

then 

(S, fp )pep  = lim(sp, fp,q)p<_q in P, 

(S, fp o Lsp)pcp = l im(Bo(sp) ,  Bo(fp,q))p<q in P. ____+ 

Proof: For all p E P,  put Lp = Ls, ,  Kp = Ks,,, and gp = fv o Lsp. For each 

pair p < q in P,  set gp,q = Bo(fv ,q) .  

For all p < q in P,  

gp = fp o Lp = fq o fp,q o Lp = ]q o Lq o gp,q = gq o gp,q, 

by (1.3). Let (T, gp)pep be such that  for every p < q in P,  

! ! 
gp = gq o gp,q. 

We show that  there exists exactly one (V, 0, 1)-semilattice homomorphism h :  

' for every p E P.  S --+ T such that  h o gp = gp 

Put  fp = gp' o Kp for all p C P.  Then 

I I l I f~ o fp,q = gq o Kq o fp,q = gq O gp,q o Kp = gp o Kp = fp 

for every p < q in P by (1.2). Then, since (S, fp )pep  is a direct limit of the 

direct system (sp, fp,q)p<_q in v, there exists a unique homomorphism h: S ~ T 

such that  

h o f p = f p  

for every p E P.  It follows that  for every p < q in P,  

! ! 
h Ogp = h o  fp o Lp = Jp o Lp = gp o Kp o Lp = gq Ogp,q o Kp o Lp 

! ! ! 
= gq o Kq o fp,q o Lp = gq o gp,q = gp 

(the 5 th equality is due to (1.2), the 6 th equality is due to (1.4)). Suppose that  

h': S --+ T is a (V, 0, 1)-semilattice homomorphism satisfying h' o gp = gp for 

every p E P.  Then 
r o h' o gp o Kp = gp Kp ( p E P ) ,  

hence 

h' o fp o Lp o Kp = fp ( p e P ) ,  
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and so, by (1.1), 
h ' o h = / ~ ,  

for every p E P. It follows that h = h ~. | 

P. Pudls [Pu] proved that every distributive (V, 0)-semilattice is the directed 

union of all its finite distributive (V, 0)-subsemilattices. Consequently, every 

distributive (V, 0, 1)-semilattice is a direct limit of a direct system ,S of finite 

distributive semilattices and (V, 0, 1)-preserving embeddings. Furthermore, we 

can assume that S is indexed by an upwards directed partially ordered set 

without maximal elements. Then, as a corollary of Proposition 1.1, we obtain 

the following result of K. R. Goodearl and F. Wehrung [GW, Theorem 6.6]. 

COROLLARY 1.2: Every distributive (V,0, 1)-semilattice is a direct limit of 
Boolean semilattiees (and (V, 0, 1)-preserving homomorphisms). 

2. T h e  c a t e g o r y  c 

All rings are associative with a unit element; all ring homomorphisms are sup- 

posed to preserve the unit. For a ring R, we denote by Id(R) the lattice of 

two-sided ideals of R and by Ida(R) the semilattice of compact elements of the 

lattice Id(R), that is, the semilattice of finitely generated two-sided ideals of R. 

Notice that Ida(R) is a (V, 0, 1)-semilattice. 

Given a ring homomorphism ~: R --+ S, we define a map IdC(~): Ida(R) --+ 

Id a(S) by the correspondence 

(2.1) I ~ S~p(I)S. 

The map Ida(~a) is a (V,0, 1)-semilattice homomorphism, and it is straight- 

forward to verify that Id a is a direct limit preserving functor from the category 

of rings to the category of (V, 0, 1)-semilattices. 

The following example shows that it is not possible to define, in a similar way, 

a functor Id from the category of rings to the category of all algebraic lattices. 

Example 2.1: Let k be a field, let R = k • k and S = k • M2(k) be k-algebras. 

Put el = (1,0), e2 = (0, 1), and 

(0( 0 01)) 
Denote by /1 , /2  the two-sided ideals of R generated by primitive idempotents 

el, e2, respectively, and by J the two-sided ideal of S generated by g2. Let 
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~: R --+ S be the ring homomorphism defined on the generators el, e2 of R by 

9~(el) = f + gl, ~(e2) = g2. Then correspondence (2.1) assigns to the ideal/1 

the whole ring S and the ideal /2 is mapped to J.  Since/1 N/2 = 0, while 

S N d = J ,  the map Id c does not preserve finite meets. 

Let k be a field. A ma t r i c i a l  k-algebra R is a k-algebra of the form 

l~p(1) (k) X ' ' '  X l ~ p ( n ) ( k )  

for some natural numbers p (1 ) , . . . ,  p(n) [Go, page 217]. The semilattice IdC(R) 

of all finitely generated two-sided ideals of the matricial algebra R is isomorphic 

to the Boolean semilattice of all subsets of the set {1 , . . . ,  n}. We fix a field k 

and denote by m the category of all matricial k-algebras. Recall that  a k-algebra 

is loca l ly  ma t r i c i a l  provided it is a direct limit of matricial k-algebras. 

In this section we shall define a new category c and a pair of functors A: c --+ 

m and A: c -+ s such that there is a natural isomorphism ~: Id c A -+ A. 

Definition: An o b j e c t  B of the category c consists of a finite set I and a family 

(B i [ i C I) of nonempty pairwise disjoint finite sets. 

Let B1 = (B~ [ i e I1), B2 = (B~ [ j e 5 )  be objects of the category c. A 

p r e m o r p h l s m  B1 -+ B2 is a pair (C,h), where C = (C ~'j I i E I1, j �9 /2) 

is a family of (possibly empty) finite sets and h = (hJ I J �9 /2) is a family of 

bijections 

hJ: U (Ci'j x B1)---+B 2. 
iCI1 

We denote by ct(B1, B2) the collection of all premorphisms B1 --+ B2. 

We say that premorphisms (C, h), (C, h) �9 c'(B1, B2) are equivalent (we write 

(C,h) ,.., (C,h))  if there is a collection (g~J: C i,j ~ ~i,j l i �9 Ii~j � 9  of maps 

such that for every i �9 I1, j � 9  and for every c �9 C i'j, b e B i, 

(2.2) h j (c, b) = "hi (g~'J (c), b). 

Observe that  the maps gi,j, i E I1, j E /2 satisfying (2.2) are necessarily 

bijections. The morphisms in c are the equivalence classes with respect to 

the equivalence relation ,-,, that is 

c(B1, B2) = c'(Bl,  B~)/~ 

We denote by [C, h], or sometimes [(C, h)], the equivalence class represented by 

the premorphism (C, h). We say that [C, hi is a morphism from B1 to B2. 
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Now we shall define the composition of morphisms in c. First we describe 

how the premorphisms are composed. For objects B1 = ( B ] I  i �9 I1), B2 = 

( Bj I J �9 I2), Ba = (B3 k I k �9 13) of the category c and premorphisms (Cl ,h l )  �9 

c'(B1, B2), (C2, h2) �9 cr(B2, B3), the composition (C, h) = (C2, h2) o (C1, hi) 

consists of the family C -- (C i'k I i �9 I i , k  �9 13) of sets, resp. a family h = 
( ha I k �9 13) of maps defined by 

c~'~ : U (c~ '~ • c~,~) 
jEI2 

for every i �9 11, k �9 Ia, resp. 

h k ((c2, c1), b) = h k (c2, h~ (c1, b)) 

, f?j,k where i �9 I1, j � 9  and k �9 I3. for e v e r y b � 9 1 4 9  'j c2 E ..2 , 

LEMMA 2 . 2 : L e t B 1  = (B~ ]i  �9 I1), B2 = (B j I J �9 I2), andB3 = (B3 k I k �9 13) 
be objects of  the category c. Let (Cl ,h l ) ,  (Cl ,h l )  �9 c'(B1,B2) and (C2,h2), 

(C2 ,h2 )  �9 c ' ( B 2 , B 3 ) .  I f ( C l , h l  ) r.~ ( e l , h i )  a n d  (C2, h2) ~ (C2 ,h2 )  , t hen  

(C2, he) o (C1, h~) ~ (C2, h2) o (d~,hl) .  

Prooi~ Since (Cl ,h l )  ~'. (C, ,h i ) ,  there are maps 

gi'J" C~ 'j --+ C~'J (i �9 I , ,  j �9 12) 
1 " 

�9 ( ' d , j  
such that for every b �9 B[ and c �9 "~1 , 

h~ (c, b) = ~ (g~'J (c), b). 

Similarly, since (C2, ha) "-~ (C2, h2), there are maps 

j,k C~,k _.e ~j,k ( j � 9  k � 9  92 : 

�9 j,k such that for every b �9 B~ and c �9 C 2 , 

h~ (c, b) = ~k 2~~ ~c'j, b). 

We put 

jCI2 

and we denote by (C, h), resp. (C, h) the composition (C2, h2) o (C1, hi), resp. 

(C2,h2) o (Cl ,h , ) .  Then for every b �9 Bi ,  C1 �9 C~ 'j, and c2 �9 Cg 'k, where 

i �9 I1, j �9 h ,  and k �9 I3, 

hk((c2,cl) b) h~(c2,h~(cl,b)) -k  j,k Nj i,j , = = h2(g 2 (c2),hl(g 1 (cl),b)) 

--~ hk ( (g j ' k ( c2 ) ,g~ ' J ( c1 ) ) , b  ) = h k ( g i ' k ( c 2 , c 1 ) , b  ). . 
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Let (Ce, he), (Cl ,h l )  be premorphisms as above. Lemma 2.2 enables us to 
define 

[(Ce, he) o (C1, hi)] = [(C~, he)] o [(Cl, hl)]. 

It remains to prove that the composition is associative and that every object of 

c possesses an identity morphism. 

LEMMA 2.3: The composition of morphisms is associative, that is, let Bn = 
(B~ I i E I~), n = 1 , . . . , 4 ,  be objects of the category c and let [Cn, h~] E 
c(B~,B~+I) for n = 1,2,3. Then 

Proob 

and 

[Ca, ha] o ([C2, he] o [C1, h,]) = ([Ca, ha] o [C2, he]) o [C1, hi]. 

Put  

(C, h) = (Ca, h3) o ((Ce, he) o (C,, hi)) 

(C, h) = ((Ca, ha) o (C2, he)) o (C1, hi). 

We prove that  

(2.3) (C, h) ~ (C, h). 

.'.' -- u (.~.. x ( u ~.~.~ x ~;...)) 
kEIa jEI2 

while 

It follows from the definition that for every i E I1, and 1 E I4, 

= U U (c~,' • (c~ ,~ x c~,')/, 
j612 kEIa 

~',' -- u ( (  u ~.. x. . ,Ox .~..)_-u u ~ . .  x ~.,. x ~,~. 
jE 2 kEIa jEI2 kEIa 

It is straightforward to verify that  for every b E B~, cl E C~ 'j, c2 E C~ 'k, and 

c3 E C3 k'z, where i E/1 ,  j E I2, k E I3, and I E/4 ,  the equality 

(2.4) hl((Ca,(C:,Cl)),b) =hta(ca,hk(ce, h{(cl,b)))=hl(((ca,ce),cl),b) 

holds. Finally, for all i E 11 and l E /4, define a bijection gi,l: Ci,Z __+ ~ , l  by 

the correspondence (c3, (c2, cl)) ~ ((c3, c2),Cl). Then, due to (2.4), for every 
b E B{ and every c E C i'l, 

h I (c, b) = ~t (gi,l (c), b). 

This proves (2.3). I 
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Given an object B = (B i I i E I) in the category c, we put 

ci,J : ~ O, if i ~ j 
[ {i}, i f i = j  

for every i , j  E I and we define maps h j, j E I, from Uie l (C  i,j z B i) = {j} x B y 
to B j by the correspondence (j, b) ~ b. 

LEMMA 2.4: The map (C, h) is an identity morphism of the object B. 

Proof'. Let Bo = (B~ ] i E Io) be an object in the category c and let (Co, ho) E 
N 

c'(Bo, B). Denote by (Co, ho) the composition (C, h) o (Co, ho). We prove that 

(2.5) (Co, ho) " (Co, ho). 

By the definition, for every i E Io, and j E I, 

Co 'j = C j'j x C; 'j = {j} x C~ 'j, 

i,j and for every b E B~ and c E C~ , 

(2.6) hJ((j ,  c), b) = hJ(j, hJo(c, b)) = hJo(c, b). 

For all i E I0, j E I, define a map gi,j: c~,J ~ 5~,j by the correspondence 
�9 K~i,j c ~ (j, c). It follows from (2.6) that  for every b E B~ and c E "~0 , 

hi(c, b) = ~(g~,~(c), b). 

This proves (2.5). 

On the other hand, let B1 = (B~ ] j E I1) be an object of the category c and 

let (C1, hi) E c ' (B,  B1). Denote by (C1, hi) the composition (C1, hi) o (C, h). 
We prove that 

(2.7) (c1, hi) ~ (5,,~1). 

Let i E I, and j E I1. By the definition, 

5~,J= c~,J • c i , i =  c~,J • {i}, 

and for every b E B i, c E C[ 'j, 

(2.8) hJ ((c, i), b) = h{ (c, hi(i, b) ) = h~ (c, b). 

i,j For all c E C 1 , define g~'J(c) = (c, i). Then, by (2.8), for every b E B i and 
K-~i,j 

c E  "J1 , 
h~ (c, ~) = ~ (gi,j(c), b). 
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This proves (2.7). I 

Now we know that c is a category. The next step is to define a functor, 

which we shall denote by A, from the category c to the category m of matricial 

algebras. Let B = (B~ ] i E I) be an object of the category c. For all i E I, 

denote by V(B i) the vector space with basis B/, and let V(B) = (~eI  V(Bi) 
be the vector space with basis B (note that  since the sets Bi, i E I, are disjoint, 

the family (V(B~) ] i E I) of vector spaces is independent). Define 

A(B) = {ct E End(V(B)) [Vi E I: c~(V(B~)) C_ V(B~)}. 

For all ~ E End(V(B)), denote by c~ ~ the restriction c~ [ V(Bi). Observe that  

A(B) is a matricial algebra isomorphic to 1-LEI End(V(Bi)) �9 

Let (C, h): B1 --+ Be be a premorphism in the category c. For all i E I1, 

j E h ,  denote by V(C i'j) the vector space with basis C i,j. For every j E 12, 

the bijection 

hi: U ( c 'j • 
iEI1 

induces an isomorphism 

r @(v(c | V(Bi)) 
iEI~ 

For all c~ E A(B1), set 

(2.9) A(C, h)(c~) : ~ ~ o ( 
jEI2 

@ ( 1 , ( c , , )  o o (r 
iCll 

Observe that  A(C, h)(a) j is an endomorphism of the vector space V(B~) for 

every j E/2 ,  and so A(C, h)(c~) E A(B2). 

LEMMA 2.5: Let B1, B2 be objects of the category c and let (C, h) E c(B1, B2). 

Then A( C, h): A( B1) --+ A( B2 ) is a homomorphism of unitary k-algebras. 

Proof." It suffices to verify that  for every a,/~ E A(B1) and for every element t 

of the field k, 

A(C, h)((~ + ~) = A(C, h)(a) + A(C, h)(/~), 

A(C, h)(a o/~) = A(C, h)(a) o A(C, h)(~), 

d(C, h)(t~) = td(C, h)(a), 

and 

A(C, h)(1y(sl)) = 1y(s2). 
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But all these equalities are clear from the definition. I 

LEMMA 2.6: Let B1, B2 be objects of the category e and let (C, h), (C, h) E 
c '(B1,  B2). I f  (C, h) ,-. (C, h), then A(C, h) = A(C, h). 

Proof." Since (C,h) ~, (C,h),  there are bijections gi,j: Ci,j ~-)~i,j such that 

for every b E B~, c E C i'j, 

hJ(gi'J(c),b) = hJ(c,b) (i E I1, j E I2). 

The bijections 9 i'j induce isomorphisms ?/i,j: V(Ci,J) __+ V(~i,j) satisfying 

and 

~ o ( r | Iv(B~))) = r 
iEI1 

r  i'j-1 @ IV(BI)) ) O (~ j ) - I  = (r  

iEI1 
for every j E 12. Substituting in (2.9), a straightforward computation leads to 

the equality A(C, h)(a) = A(C, h)(~) for every c~ E A(B1). I 

We define A([C, h]) = A(C,h) for every morphism [C, h] E c(B1, B2). In 

order to prove that A is a functor we have to verify that  it preserves both the 

composition of morphisms and the identity morphisms. 

LEMMA 2.7: The functor A preserves the composition of morphisms. In par- 
ticular, let B~ = (B~ I i E I,~), n = 1, 2, 3, be objects of the category c and let 
(C1, hi) E c ' (B, ,  B2), (C2, h2) E c'(B2, B3) be premorphisms. Then 

A((C2, h2) o (Ca, hi))  -- A(C2, h2) o A(C1, hi). 

Proof." Denote by (C,h) the composition (C2,h2) o (Cl ,h l ) .  Recall that for 

every ~ E I1, k E/3 ,  

c 'k = U x c 'o 
jEI2 

�9 r:J'k where i E 11, j E 12 and k E Is, and for every b E B~, Cl E C[ 'j, and c2 E "~2 , 

It follows that 

h k ((c2, el),  b) -- h k (c2, h~ (51, b)). 

0k((c2 | Cl) | b) = r | el(c, e b)), 



14 P. RIJZI(~KA Isr. J. Math. 

where r r k, Ck are the vector space isomorphisms induced by the maps h{, 
h k, h k, respectively. Thus, for every k E/3,  

Ck =r ~ ( ~(1V(C~.k) |162 ~ 
jEI2 

where 0 k is the "corrective" homomorphism induced by the correspondence 

(c: |  | b ~ c2 | (Cl | b) 

�9 ~ i , j  (here again b E Bi, cl E --1 , c2 E cJ'k). 
Let k E /3. Put ck = (~jcI2 (1V(C~'k) | r 0 k, and compute that for every 

a E A(B1), 

(2.10) c k o  ( ~ ( 1 V ( C ~ , k ) |  o C k - '  : E]~(lv(c~,k)| A ( C l , h l ) ( a ) J ) .  

\ iEi1 jEI2 

Composing the morphisms in equality (2.10) with r resp. (r from the left, 
resp. right hand side, we get that 

A(C, h)(a) k = A(C2, h2)(A(C,, hl)(a)) k. I 

LEMMA 2.8: Let B = (B i I i E I) be an object of the category c. If [C, h] is 
the identity morphism on B, then A(C, h) = 1A(B).  

Proof'. Let B1 = (B~ [ j E I1) be an object of the category c and (C1, hi) E 
c~(B, B1) a premorphism such that C~ 'j ~ 0 for every i E I, j E I i .  Then the 
homomorphism A(C1, hi) is one-to-one, and by Lemmas 2.4, 2.6 and 2.7, 

A(CI, hi) o A(C, h) = A((C1, hi) o (C, h)) --- d(C1, hi). 

It follows that A(C, h) = 1A(B). I 

We define a functor A: e --+ b as follows: For each object B = (B i I i E I), 
we define A(B) to be the power-set semilattice P(I) of the se~ I. Given a pre- 
morphism (C, h) E cr(B1, B2), we define a (V,0, 1)-semilattice homomorphism 

A(C, h): A(B~) --+ A(B2) by the rule 

J~+ I j  E I2 I Uci 'J  T~ol ( J E P ( I I ) ) .  
k iEJ 

It is clear that (C, h) ,-~ (C, h) implies that A(C, h) = A(C, h). Thus we are 
entitled to define A([C, h]) = A(C, h). 
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Any two-sided ideal of a matricial algebra is principal. For every a E A(B), 

we denote by (a) the two-sided ideal generated by the homomorphism a. Then 

the rule 

 {ieIl  
defines an isomorphism ~B: Id c A(B) -~ A(B). 

LEMMA 2.9: The isomorphism ~: Id c A -+ A is na tura l  

Proof We prove that for every (C, h) E c'(B1, B2), the diagram 

Id c A(C,h) 
Id a A(B1) ) Id c A(B2) 

 -11 
A(B1) ~ A(B2) 

A(C,h) 

commutes. Let j E 12 and a E A(B1). Then 

i ( C , h )  o r181 ((a}) = {j E /2 [3i ~ I1: cei# 0 & C i,j gk 0}. 

Set fl = A(C, h)(a). Then 

~B2 ~ = rlB2((/~}) = {J E 12 [/~J r O} 

and, by the definition, for every j E /2 ,  

~ J : ~ o ( ~ ( X v ( c i , ~ ) |  -1, 
" iEI1 

where 4# is the isomorphism induced by the bijection h j. Then flJ ~ 0 iff 

( ~ ( l v ( c < J )  | a i) # 0 
i@I1 

iff there is i E I1 such that a i ~ 0 and C i,j # O. I 

Definition: Let f :  81 --) 8 2 be a homomorphism in s. Let B1, B2 be objects of 

the category B and let ei: Ii -+ J(si), i = 1, 2, be isomorphisms of posers. We 

say that a morphism [C,h] E c(B1,B2) is f - i n d u c e d  w i t h  r e s p e c t  to  el,  e2 

if the diagram 
Bo(f )  

, 

A(B1) A([C,hl) , A(B2) 
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commutes. 

Observe that the morphism [C, hi is f-induced with respect to cl, ~2 if and 

only if C i,j ~ 0 iff f (el( i ) )  >_ ~2(J) for every i E/1,  j E/2. 

PROPOSITION 2.10: Let P be a partially ordered upwards directed set without 

maxima/elements. Let 

be a direct system in s. Let 

be a direct system in the category c and (ep: Ip --+ J(sp) ] p E P) a family of 

bijections such that ICy,q, hp,q] is a fp,q-induced morphism with respect to gp, 

eq for every p < q in P. If R is a direct limit of the diagram 

(d(Up), A([Cp,q, hp,q)))p<q in e, 

then IdC(R) is isomorphic to lim(sp, fp,q)p<<_q i, P. 
- - - +  

Proob This follows from Proposition 1.1 and the fact that the functor Id r 

commutes with direct limits. | 

3. Bergman's theorems 

The purpose of this section is to illustrate the effectiveness of the tools devel- 

oped in Sections 1 and 2. The results proved here are not going to be used later 

in the paper. We reprove the two main results from the unpublished notes by 

G. M. Bergman [Be]. Different proofs of the first of them were published in 

[GW]. It states that every countable distributive (Y, 0, 1)-semilattice is isomor- 

phic to the semilattice of finitely generated two-sided ideals of a locally matri- 

cial algebra. As far as I know, the second theorem has never been published. 

It is the following assertion: Every strongly distributive (Y, 0, 1)-semilattice is 

isomorphic to the semilattice of finitely generated ideals of a locally matricial 

algebra. A (V, 0)-semilattice is s t rongly  d is t r ibut ive  provided every element 

is a join of join irreducible elements. The ideal lattices of strongly distributive 

(y, 0)-semilattices are characterized as the lattices of all hereditary subsets of 

partially ordered sets [Be]. A strongly distributive (Y, 0)-semilattice has a unit 

element if and only if the corresponding partially ordered set P has finitely 

many maximal elements and every element of P is under one of them [Be]. 
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THEOREM 3.1: Every countable distributive (V, 0, 1)-semilattice is isomorphic 
to the semilattice of finitely generated two-sided ideals of a unital locally 
matricial algebra. 

Proof: Let S be a countable distributive (V, 0, 1)-semilattice. By a theorem 

of P. Pudls the semilattice S is the directed union of its finite distributive 

(Y, 0, 1)-subsemilattices [Pu]. Since S is countable, there is a countable sequence 

so c_ Sl c s2 c_. . .  

of finite (Y, 0, 1)-semilattices such that  S = Uie~ si. Put  In = J(sn) and, for 

all n _< m in w, denote by fn,m the inclusion map Sn ~ Sm. 
For each n E w and i E In, put 

.B~ = { ( i o , - . . , i n )  E !o X . . .  x . & I i o  >_. . .  >__ i~ = i } .  

Given n < m in ~, set 

ci,J ={( in ,  ,im) E I n • 2 1 5  ( iEIn ,  j E I m )  
n ~ m  " " " - -  - -  

and for every j E Ira, define an isomorphism hJ,m : Uie, ,  (C~',Jm • Bin) --+ BJm 

by the rule 

( ( in , . . . ,  ira), ( i0 , . . . ,  in)) ( io , . . . ,  ira). 

We verify that  

(i) for every n E w, for every ~ E In, B~ # 0, 

(ii) if n < m, then for every i E In, j E Ira i,j , Cn,m # O iff i >_ j. 
Ad (i): Let n E w. It suffices to prove that  for every i E In+l there exists 

j > i in In. Since V In = 1 > i and i is join irreducible, there is j E In with 

j > i and we are done. 

Ad (ii): Let n < m i n w .  L e t i  E In a n d j  E I m  s a t i s f y i _ > j .  Then there 

exist ko , . . . ,  kt-1 E In+l with i = ko V " "  V kt-1, and since i _> j and j is join 

irreducible, ks >_ j for some s < t. T h u s i  >_ k > j for some k E In+t. By 
i,j induction we prove that  if i _> j ,  then Cn, m ~ O. The converse implication is 

clear from the definition. 

Having verified (i), it is clear that  

(Bn,  [Cn,ra, hn,m])n<m in w 

is a direct system in c. It follows from (ii) that  for every n < m in w, 

A([Cn,m, hn,m]) = Bo(fn,m), that  is, [Cn,m, hn,m] is an fn,m-induced morphism 

with respect to identity maps. Now we apply Proposition 2.10. I 
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THEOREM 3.2: Every strongly distributive (V, 0, 1)-semilattice is isomorphic to 
the semilattice of finitely generated ideals of a unital locally matricial algebra. 

Proof: Let S be a strongly distributive (V, 0)-semilattice. Then there is a 

partially ordered set Q such that  S is isomorphic to the semilattice of compact 

elements of the lattice H(Q), that  is, 

S ~ {(F][ F �9 [Q]<~}. 

The semilattice S has a greatest element if and only if Q = (M] for some finite 

subset M of Q (i.e., if for every q �9 Q there is m �9 M with q _< m). Put  

K = {F �9 [Q]<~ I M c F} 

and P = K • w. Define an order relation on the set P by (I, n) < (J, m) if I C_ J 

and n < m. Observe that  P is upwards directed without maximal elements. 

Given a pair p = (Ip, n) _< q = (Iq, m) in P,  let fp,q: H(Ip) ~ H(Iq) denote 

the semilattice homomorphism given by fp,q((i]1p) = (i]1q for every i E Ip. The 

homomorphism fp,q preserves 0 and 1 and 

S = lim(H(Ip), fp,q)p<q in P- 
- . _+  

Let p = (Ip,n) E P. For each i E Ip, let Bp be the set of pairs (n_,i), 

where n = ( n l , . . . , n s )  is a sequence of natural numbers not bigger than n 

and ~ = ( io , . . .  ,is) is a sequence of elements of Ip such that  io E M and 

io > . . .  > is = i (s is a natural number). It is clear that  the set B~ is nonempty 

for every i E Ip. 
L e t p =  (Ip,n) < q =  (Iq,m) be a p a i r o f e l e m e n t s o f P .  Giveni  E Ip and 

j E Iq, we define Cp; j to be the set of pairs (m, j )  such that  m = ( m l , . . .  ,mt)  
is a sequence of natural numbers not bigger than m and j = ( jo , . . .  ,jr) is a 

sequence of elements of Iq satisfying i = j0 > "'" > jt = j (t is a natural 

number) and if i > j ,  then either ml > n or j l  ~t Ip. 

Given pairs (n',iZ) E B~, where n' = ( n l , . . . , n s )  a n d / '  = ( io , . . . , i s ) ,  and 

(n" , /")  E C~; j ,  where n_" = (ns+ l , . . .  ,nt) and i" = ( is , . . .  ,it), we define 

h j ((n" i"~ (n' i '~ = (n,i), p , q k k - -  , -  ] ,  ~ - -  , - -  2 ]  

where n = ( n l , . . .  ,nt) and / = ( i0, . . .  ,it). It is readily seen that  (n,/) E Bq 3, 

and so we have defined a map hip,q: [JicIp (C~; j x B~p) -+ B~. On the other 

hand, let (n,/),  where n = ( n l , . . . ,  nt) a n d / =  (io . . . .  , it), be an element of Bq 3. 
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Denote by s the maximal  number from the set { 0 , . . . ,  t} such tha t  is E Ip and 

the pair (n ' , / ' ) ,  where n'  = ( n l , . . . ,  ns) a n d / '  = ( i 0 , . . . ,  is), belongs to By e . If 

s = t, let n "  be an empty sequence a n d / "  = ( i t) ,  while if s < t, define n"  --- 

( n s + l , . . .  , n t )  and i "  = ( i s , . . .  , i t) .  It  follows from the choice of s tha t  if s < t, 

then either ns+l  > n or is+l ~ IT. Hence ( n " , i " )  E C i'j and the correspondence _ v p , q  

r j  . " i , j  (n , i )  ~ ( (n" , / " ) ,  (n' ,~')) defines a map h p,q. B~q --+ U~EI,,(C~,q • B~). The map 

h'J,q is clearly one-to-one and the composition hr jq  o hJp,q equals the identi ty 

map on the set UiE,,  (Cp:~ • Bp). It follows tha t  the map hJp,q is a bijection. 

Let p = ( IT ,n )  < q = ( I q , m )  < r = ( I t , l )  be elements of P ,  let i E I F, 

j E I q  a n d k E I ~ .  For a l l ( m r , j  r ) E ~ i ' J  w h e r e m  r . _ = 
_ ~p,q, _ = ( m l , . .  , m s )  and j '  

C j,k where m "  = (ms+l  . .  ,mr) ,  j "  = (js,  , jr) ,  ( j o , - . . , j s ) , a n d  m ' r , j  " ) E _ q , ~ ,  _ , . _ . . .  

define 
i , k  rr . f i x  

, t  = (m_,j), 

where _m = ( m l ,  �9 �9 �9 ,mr )  and _J = (j0, �9 �9 �9 , j r ) .  Notice tha t  YT,q,r~i'k is a map from 

Uje , ,  (C~:r k X Cp: j )  to Cp:~. Let i E I T, j E Iq and k E I~ satisfy i _> j _> k. Then 

for every natural  number  s < t < u, and (n, / )  E B~, where n = ( n l , . . .  , n s ) ,  

/ = ( i 0 , . . . , i s ) ,  ( m ' , j  r) E Cp; j ,  where m r = ( m s + l , . . . , m t ) ,  jr = ( j s , . . . , j t ) ,  

gj,k where m 'r ( m r + l , . .  m ~) ,  j , ,  . ,  and (m" ,~")  E ~q,~, _ = -, _ = ( j t , . .  ju ) ,  

k i k H . rr  ), (m ' , j ' ) ) ,  (_n,i)) = (rn, j )  

h k " ' m "  " "  = q , ~ _  , j  ),h~,q((m__',j'),(n,i))), 

where m = ( n l , . . . , n s , m s + l , . . . , r n ~ ) ,  and j = ( i o , . . . , i s , j s + l , . . . , j ~ ) .  (Note 

tha t  is = j = j~.) It follows tha t  

(BT, [CF,q, hF,q])T<q i,, P 

forms a direct system in the category c. For every p E P define a bijection 

oF: I F --+ J ( H ( I p ) )  by i ~-+ (i]tp. It is clear tha t  given p = ( In ,n)  < q = ( I q , m )  

in P ,  for every i E Ip, j E Iq, the inequality i > j (i.e., (i]I~ D (j]~q) holds iff 

CpJ:~ r 0, whence the morphism [Cp,q, hp,q] is h ,q- induced with respect to ep, 

~q. Proposit ion 2.10 concludes the proof. I 

4. Representation of  distributive lattices 

Let M be a finite set. Denote by T O ( M )  the set of all total  orders on the set M. 

For all c~ E T O ( M ) ,  denote by H(c~) the set of all heredi tary subsets (including 

the empty set) of M with respect to the order c~. 
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Let N be a subset of a finite set M and let a �9 TO(M). Denote by a I N the 

restriction of a to the set N. For all a: a0 < " .  < an and/3: bo < " .  < bn E 
TO(M) define a "~N /3 if a~ r bi implies hi, bi �9 N for every i �9 {0 , . . . ,  n}. It 

is clear that  "~N is an equivalence relation on the set TO(M),  and we denote 

by [a]N the equivalence class of the linear order a. 

LEMMA 4.1: Let N be a subset of a finite set M. For every a �9 TO(N) 
and 7 �9 TO(M),  there exists a unique/3 E TO(M) satisfying/3 ~'~Y ~ and 
/ 3 I N = a .  

Pro0[." For /3, ~ E N ,  /3 N N 7 iff there  exists a permutation a of M fixing 
every element of M \ N such that  a <Z b iff c(a) <z a(b), for all a, b E M. The 

conclusion easily follows. I 

Let Q be a subset of the set P (M) .  Denote by C(Q) the set 

{~: Q --4 P(M) I VN E Q: ~(N) C N}. 

For every ~ E C(Q), put 

= I N �9 Q}. 

Definition: Let L be a finite distributive lattice. For all a �9 J(L),  let B~ be 

the set of all pairs (a, ~), where a �9 TO([a)n), ~ �9 C(P(L)), and the following 

properties are satisfied: 

( i )  [a)L D U ~ ,  

(ii) for all a' > a in J (n) ,  if [a')L �9 H(a) ,  then [a')L ~ U~. 
Denote by BL the family (B~ I a �9 J(L)); it is an object of b associated to 

the finite distributive lattice L. 

Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2. Let a �9 J(L1) 
a,b and b E J(L2). If b ~ a, then we put CL1,L 2 : ~. Suppose that  b _< a, that  

is, [b)n2 D [a)L1 Then we define C ~'b - �9 L1,L2 to be the set of all pairs ([/3 ][a)L1, r  

where/3' �9 TO([b)L2), r �9 C(P(L2) \ T'(L1)), and the following properties are 

satisfied: 

(iii) [a)L1 �9 H(/3' I ([b)L2 M L1)), 

(iv) [b)n2 ~_ Ur 
(v) for all b' �9 J(n2) with b < b' _< a, if [b')n2 �9 H(/3'), then [b')L2 ~ Ur 

(Observe that  if/3 "~[~)L~ /3', then [a)nl �9 H(/3' I ([b)L2 M L1)) iff [a)L1 �9 
H(/3 I ([b)L2 N L1)) and for every b' �9 J(L2) with b < b' <_ a, [b')L2 �9 H(/3) 
iff [bt)n2 �9 H(/3'); hence the definition is correct.) The following lemma is 

well-known [MMT, Exercises 2.63.10]. 
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LEMMA 4.2: Let L1 be a (0, 1)-sublattice of  a finite distributive lattice L2. 

Then for every b �9 J(L2), [b)L2 [3 L1 -= [C)L~ /'or some c �9 J(L1).  

LEMMA 4.3: Let L1 be a (0, 1)-sublattice of  a finite distributive lattice L2. Let 

b �9 J(L2).  The rule 

(4.2) (Z,r 

where ~ = r U ~ and/~ E TO([b)L2) satisfies ~ "~[a)L1 /~' and/3 r [a)n, = a,  

defines a map 
b . [ca,b Ba Bb hLI,L2" U k L1,L2 X L1)--~ L2" 

aEJ(L]) 

a,b Proof'. Let a E J(L1). If b ~: a, then the set CL1,L 2 is empty. Suppose that 
I b b _< a. Let (a, ~) E B ~L,, and ([~ ][a)L1 , ~.)t) �9 CL1,L2. Let (~, ~) be the pair 

defined by the correspondence (4.2). According to Lemma 4.1 such a pair exists 

and is uniquely determined. We prove that (/~, ~) E B b It suffices to verify L2" 
that 

(i) [b)L2 ~_ Ur 

(ii) for all b' > b in J(L2),  if [b')n2 �9 g(l~), then [b')L2 ~ Ur 

Ad (i): By the definition [b)L2 ~_ Ur Since we have supposed that b ~ a, 

[b)L2 ~_ [a)LI _~ U~. It follows that [b)L2 ~_ (Ur U (U~) = Ur 
I Ad (ii): Let [b)L2 �9 H(/~) for some b _< b' �9 J(L2). I fb '  ~ Ur we are 

done. Assume otherwise. Then, by property (v) of C a'b b' L1,L2 '  ~ a, that is, 
[b')L2 n L1 ~ [a)L~. By Lemma 4.2, [b')L2 A nl  = [a')L1 for some a' �9 J(L1). 
Since [b')L2 �9 H(/~), we have that [a')L~ �9 H(Z  I ([b)L2 M L1))). By property 

(iii) of C ~'b also [a)L1 [ H(~  �9 ([b)n2 M L1))), and so either [a')n~ D [a)L, or L1,L2' 
[a)nl ~ [a')L1. According to the assumption that b ~ ~ a, only the latter case 

is possible, and so a < a' and [a')L, �9 H(a) .  By property (ii) of B ~ L I '  w e  have 
that [a')n, ~ U~, whence [b')L: ~ Ur I 

LEMMA 4.4: Let L1 be a (0, 1)-sublattice of  a finite distributive lattice L2. Let 

b E J(L2). The map h b defined by (4.2) is a bijection. L1,L2 

Proof" First we prove that the map h b is onto. Let (/~, ~) E B b Denote L1,L2 L2" 
by ~ the restriction r I P ( L 0 .  By Lemma 4.2, [b)L2 M L1 = [C)L1 for some 

c E J(L1).  Since, by property (i) of B b [b)L2 D Ur we have that [C)L1 D U~. 
L2: -- 

The set of all a' C J(L , )  for which [a')Ll E H(/~ I ([b)L2 ML1)) and [a')L, ~_ U~ 
is nonempty (it contains at least c) and totally ordered with respect to ft. Let 
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a be the greatest element of this set. Put  a = ~ I [a)L~. It is straightforward 

that (a, ~a) �9 B a LI" 
Den<)te by r  the restriction ~p I (P(L2) \ P(L1)).  Trivially [b)L2 _DUr 

and we have chosen a �9 L1 so that  [a)L, �9 H(/~ I ([b)L2 n L1)). In order to 

prove that ([/~][a)L2, r  �9 Ca'DLI,L~, it suffices to verify that  [b')L~ ~ U~p' for every 
t b' �9 J(L2) such that b < b' _< a a n d  [b)L~ �9 H(~).  Let b' �9 J(L2) be any 

such element. Then [b')L2 ~ Ur by property (iii) of B ~ and since b ~ < a and L2' 
[a)L, D_ 0~, we have that [b')L~ D_ [a)L1 D_ 0~, whence [b')L~ ~_ Ur 

By the definition, 

, r  = ( Z , r  

It remains to verify that the map h b is one-to-one. Let LI ,L2 

hb,L2(([~'][a)L~, ~b'), (a, ~)1 = (fl, ~b) 

for some a �9 J(L1),  ([~'][alL2,~P') �9 ca'bL1,L2, and (a ,~)  @ B aLl. According to 
property (iii) of C a'b [a)L~ �9 H(~ '  [ ([b)L2 N L1)) which is equivalent to L1,L2 ~ 
[a)L1 �9 H(/~ [ ([b)L2 N L1)). By property (ii) of B a [a')L~ ~ U~ for every L1 ~ 
a < a' �9 J(L1) such that [a')L1 �9 H(a).  Since a = ~ I [a)L~, a is the greatest 

element, with respect to the total order 13, of the set of all a ~ �9 J(L1) which 

satisfy [a')L, �9 H(~  [ ([b)L2 N L1)) and [a')Lx D U~. It follows that a is 

uniquely determined by the pair (~ , r  Since ~a = ~p [ P(L1),  a = ~ [ [a)Lx, 

r = r [ (7 ) (L2) \~ (n l ) ) ,  and [~'][~)L~ = [~][a)L,, the map hb L1,L2 is one-to-one. 
| 

LEMMA 4.5: Let L1 be a (0, 1)-sublattice of a finite distributive lattice L2, let 

L2 be a (0, 1)-sublattice of a finite distributive lattice L3. Then 

Proos 

[CL, ,L3, hL,,n3] = [CL2,L3, hn2,n3] o [CL1,L2, hn,,L2]. 

Let a E J(L1) and c �9 J(L3). We set 

5a,c  = (Cb,C Ca,b LI,L2,L3 U L2,L3 X LI,L2/' 
bcJ(L2) 

and we define a map ~c - II tC a'c a B c by the rule L1,L2,L3" k-]aEJ(L1) k L1,L2,L3 • BL,) --+ L3 

hL1,L ,L3(((b ' ' = , r )), 

h c I , h b ~l , 
L2,L3(([~/][D)L2,~ ), El,L2(([ ][a)Ll,~)/) (OL,(~))) 
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' C a'b ' ' r:b'c By for every (a ,~)  E BaLl, ([~ ][a)L1 , ~)t) E L1,L2' and ([7 ][b)L2,X ) E '~L2,L3" 
the definition of the composition of morphisms in the category c, 

[CL1,L~,L3,hL1,L~,L3] = [CLz,L3, hL~,L~] o [CL1,L~, hL1,L~]. 

a~c ~a~c 
For every a E J ( L 1 )  and c E J(L3), define a map gL1,L2,L3: CL1,L2,L~ ~ 

C a'~ by the rule L1,La 

((b']t~)~, ~'), ([~']Eo)~,, r ~ (b"]Eo)~,, ~"), 

3" and (3`" ~ /~'- where X" = X 'Ur  and 7" satisfies both 3`" "~[b)L2 I [b)L2) [a)L~ 
By an argument similar to the one of the proof of Lemma 4.1, we easily see 

that such a 3`" E TO([c )L3)  exists and that its properties uniquely determine 
the equivalence class [3,"][~)L~ �9 

' r~b'c Let Let (a, qo) E BaLl, ([/~ ][a)L1' ~S) E C a'bL~,L2, and ([3` ][b)L 2 , X') E "~L2,L3" 

" " gL~,~,L~((b]Ib)~,X),([ ][o)~,r ([3` ]Io)~,~ ) =  a'~ ' ' 9' ' 

Then, on the one hand, 

h C  ! ! ! ~,L~,L~(((b ]Ib)~, X ), ([9 ]I~)~, r (~, ~)) 
h c , , b ~ = , X ), hL~,L~ (~,  ~ ) )  L~,L~((b ]Ib)~ (([Z ]I~)~,, r )), 
h c l l L~,L~((b ]I~)~, ~ ), (~, r 

where r = ~'  L_) ~,/~ ,-,[~)~ ~', and ~ I [a)L~ = a.  Consequently, 

c ! hL~,L~((b ]Ib)~, ~'), (~, r = (3,, ~), 

where X = X'U r 3, "~[b)L2 3`', and 3, I [b)L2 ---- /3, which implies both 

(3` I [b)~)  ~I~ /~  Z' and 3, I [~ )~  = ~. 
On the other hand, 

c It h ~ , , ~ ( ( b  ]Ia)~, ~"), (~, ~)) = (~, ~), 

where ~ = X" U ~ = X' U ~' U ~, ~ ,~[~)~1 3`", and ~ [ [a)L~ = a.  It follows that 

"~[b)~: 3`' and since, by the definition, (3`" [ [b)L:) "-~[=)~ ~', we have that also 

(~ [ [b)L~) '~ ' [a)L 1 ~t. Thus ~ = 3' and ~ = X. | 

LEMMA 4.6: Let L1 be a proper (0, 1) - sub la t t i ce  o f  a l~nite d i s t r i b u t i v e  la t t i ce  

L~. Then C a'b L~,L~ r 0 i f f b  <_ a , / ' o r  e v e r y  a e J ( L ~ )  and b ~ J(L2). 

Proof." (=*) It follows directly from the definition. (*=) Suppose that a _> b. 

Let/3' be any total order on the set [b)L: such that [a)L~ ~ H(/3 '  [ ([b)L~ ~L1)). 
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Define r = [b)L~ (it is exactly here that we use the assumption L1 ~ L2), 

while r  = 0 for every K C L2 from P(L2) \ P(L1). It is straightforward 
! , C a'b m that ([/~ ][a)L~ r  e L1,L2" 

THEOREM 4.7: Every distributive (0, 1)-lattice is isomorphic to the semilattice 
of finitely generated ideals of some locally matricial algebra. 

Proof." Let L: be a distributive (0, 1)-lattice. Denote by P the poset of all (0, 1)- 

sublattices of s ordered by inclusion. For all L1 C_ L2 in P denote by iLI,L2 the 

inclusion map. If the lattice s is finite, the assertion follows from Theorem 3.1. 

Suppose that s is infinite. Then P has no maximal elements and 

f~ ~-- lim(LI,iL1,L2)L1C_L~ in P- ---+ 

It follows from Lemma 4.5 that  

(BL,, [CL1,L~, hL1,L2])LlgL2 in P 

is a direct system in the category c. Let L1 C L2 in P.  By Lemma 4.6, 
a,b CLI,L 2 # ~ i f fb  _ a, for every a E J(L1), and b E J(L2). It follows that 

the morphism [CLI,L2, hi~,L2] is ii~,i2-induced with respect to identity maps. 

Finally, we apply Proposition 2.10. | 

We have proved (Theorem 3.1, Theorem 3.2, Theorem 4.5) that every dis- 
tributive (V, 0, 1)-semilattice which is either 

(a) countable or 

(b) strongly distributive or 

(c) a lattice 

can be represented as the semilattice of all finitely generated ideals of some 

unital locally matricial algebra. It is easy to observe how these results imply 

that  every distributive (V, 0)-semilattice which is either countable or strongly 

distributive or a lattice is isomorphic to the semilattice of finitely generated 

ideals of a locally matricial algebra, now not necessarily with a unit element. 

Indeed, for a semilattice S, we denote by S the semilattice obtained by adding 

to S a new element 1 such that 1 > s for every s E S. If S is a distributive (V, 0)- 

semilattice satisfying (a), (b) or (c), then S is a (V, 0, 1)-semilattice satisfying 

(a), (b) or (c), respectively. Then there exists a locally matricial algebra R 

with IdC(R) _~ S. The algebra R has a unique maximal two-sided ideal I which 

itself is a (non-unital) locally matricial algebra and the semilattice of its finitely 

generated two-sided ideals is isomorphic to S. 



Vol. 142, 2004 IDEAL LATTICES OF LOCALLY MATRICIAL ALGEBRAS 25 

5. T h e  F- invar ian t  p r o b l e m  

In this section we show how to solve the F-invariant problem applying the main 

results of Section 4. The idea of the use of the F-invariants to classify uniform 

modules over associative rings is due to J. Trlifaj [T1, T2] and P. C. Eklof [ET]. 

We outlined the idea in the Introduction; now we are going to study it in detail. 

Definition: Let L be a (0, 1)-lattice. 

(i) Let a be a nonzero ordinal number. A sequence A = (as I a < a) of 

nonzero elements of L is called a cofinal  s t r i c t ly  dec reas ing  cha in  (or 

c.d.c.) if 

(1) a~+l < as  for all a < a, 

(2) a~ = Aa<~ am for all limit ordinals/3 < a, 

(3) if 0 ~ a E L, then there is a < a such that  as ___ a .  

(ii) The lattice L is called s t r o n g l y  dense  provided L possesses a c.d.c. The 

d i m e n s i o n  of a strongly dense lattice L is the minimal length of a c.d.c. 

in L. 

Definition: Let L be a (0, 1)-lattice. Let a < b < 1 be elements of L. Then b 

is c o m p l e m e n t e d  over  a if there is c E L such that  b A c = a and b V c = 1. 

Definition: Let L be a strongly dense modular lattice of uncountable dimension 

n. Let A = (as [ a < n) be a c.d.c, in L. Put  

E(A) = {a < n ] 3~>a: am is not complemented over az}.  

Denote by B(n) the Boolean algebra of all subsets of n modulo the filter gen- 

erated by closed unbounded sets. Given a subset E of n, we denote by E the 

element of B(n) represented by E. The equivalence class E(A) does not depend 

on a particular choice of a c.d.c, of the minimal length n lET, Lemma 1.8]. It 

is called the F- invar ian t ,  F(L), of the strongly dense lattice L. 

Let n be a regular uncountable cardinal and let E be a subset of n \ {0}. Let 

L~ be the lattice defined in lET, Definition 1.12], that  is, the (0, 1)-sublattice of 

the lattice of all subsets of n ordered by inverse inclusion generated by intervals 

[a, t3), where a < ~ < n and a ~ E. By [ET, Theorem 1.13], LE is a strongly 

dense distributive lattice of cardinality and dimension n such that  F(LE) = E. 

Denote by Is the ideal lattice of LE. By lET, Theorem 1.15], IE is a strongly 

dense algebraic distributive lattice of dimension n whose greatest element is 

compact and F(IE) = E. 
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Let L be a modular lattice. Then 

{a E L [ b is not complemented over a} 

is a lower subset of L for every nonzero element b E L [ET, Lemma 1.4]. A 

nonzero element b of the lattice L is called w eak ly  c o m p l e m e n t e d  if b is 

complemented over a for every a with 0 < a < b. 

Definition: Let L be a strongly dense lattice of dimension ~ > 1. 

(i) L is c o m p l e m e n t i n g  provided L possesses a c.d.c. A = (as [ a < ~) such 

that  for all a </~ < ~, as is complemented over az. 

(ii) L is n a r r o w  provided that  it is not complementing and L possesses a c.d.c. 

.4 = (as [ a  < ~) such that  for all a < ~3 < ~, as is not complemented 

over az. 

(iii) L is c o n s t r i c t e d  provided that  it does not have a c.d.c. A = (as [ a < ~) 

such that  for all a < ~, aa+l is weakly complemented. 

By lET, Theorem 1.10], a strongly dense modular lattice L of dimension ~ is 

complementing if and only if F(L) = g and it is narrow if and only if F(L) = ~. 

Due to lET, Corollary 1.11], the lattice L is constricted if and only if there 

exists a > 0 in L such that  a r is not weakly complemented for every a r with 

0 ~ a ~ < a. It follows that  L is narrow provided L is constricted. On the 

other hand, given an uncountable regular cardinal ~, the lattice LE2 where 

E2 = {a < ~ [ a is a limit ordinal } is a narrow but not constricted distributive 

lattice of dimension ~ lET, Corollary 1.14]. 

An R-module M is called s t r o n g l y  u n i f o r m  provided the lattice L(M) of its 

submodules is strongly dense. The dimension and the F-invariant of a strongly 

uniform module M correspond to the dimension and the F-invariant of the 

lattice L(M). A strongly uniform module M is c o m p l e m e n t i n g ~  n a r ro w ,  or 

c o n s t r i c t e d  if the lattice L(M) is complementing, narrow, or constricted. The 

following problems are stated in [ET]: 

lET,  PROBLEM 2.3]: For an uncountable regular cardinal ~, which elements 

of  B(a), other than g, are the F-invariant of a strongly uniform module over a 

regular ring? 

[ET,  PROBLEM 2.4]: IS there a strongly uniform module of dimension ~ which 

is narrow but not constricted? 

Both the problems are solved combining Theorem 4.5 and [ET, Lemma 2.1]: 
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[ET, LEMMA 2.1]: Let L be an algebraic lattice and k be a field. Assume that 

L _~ Id(S) for a k-algebra S. Then L ~ L(M)  for some right R-module M,  

where R = S | S ~ Moreover, i f  S is a locally matricial k-algebra, then so is 

R. 

THEOREM 5.1: Let ~ be an uncountable regular cardinal, let E be a subset of 

\ {0}. Then there exists a locally matricial algebra R and a right R-module 

M with L (M)  ~_ IE. 

In particular, all dements orB(a) are realized as the F-invariant of a strongly 

uniform module over a unit-regular ring. 

Proo~ Since IE c ~ LE, compact elements of IE form a distributive lattice. 

By Theorem 4.5, there exists a locally matricial algebra S with IdC(S) _ LE, 

whence Id(S) ~_ IE. Now, by [ET, Lemma 2.1], L(M)  ~_ IE for a right R = 

S | S~ M,  and R is a locally matricial algebra. | 

THEOREM 5.2: For every uncountable regular cardinal ~ there exists a strongly 

uniform module of dimension ~, over a locally matricial a/gebra, which is narrow 

but not constricted. 

Proof: Let 

E2 = {a < ~] a is a limit ordinal}. 

Then the algebraic lattice IE2 is narrow but not constricted. By Theorem 5.1, 

there are a locally matricial algebra R and a right R-module M with L(M)  ~_ 

IE2. | 
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